Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099547629> ?p ?o ?g. }
- W2099547629 abstract "The near-wall, subgrid-scale (SGS) model [Chung and Pullin, Large-eddy simulation and wall-modeling of turbulent channel flow, J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Reθ based on the free-stream velocity and the momentum thickness in the range Reθ = 103 - 1012. Results include the inverse skin friction coefficient, √2/Cf, velocity profiles, the shape factor H, the Karman constant, and the Coles wake factor as functions of Reθ. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Reθ = O(106. At extremely large Reθ, the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Reθ of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Reθ could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., Predictive model for wall-bounded turbulent flow, Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Reτ based on the friction velocity and the boundary layer thickness, Reτ =7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Reτ =62,000, 100,000 and 200,000 that lie within a gap in log(Reτ) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Reτ and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude." @default.
- W2099547629 created "2016-06-24" @default.
- W2099547629 creator A5071677947 @default.
- W2099547629 date "2012-01-01" @default.
- W2099547629 modified "2023-09-27" @default.
- W2099547629 title "Large-Eddy Simulation of the Flat-Plate Turbulent Boundary Layer at High Reynolds Numbers" @default.
- W2099547629 cites W1508601942 @default.
- W2099547629 cites W1571139409 @default.
- W2099547629 cites W1577773964 @default.
- W2099547629 cites W1580865944 @default.
- W2099547629 cites W1632204961 @default.
- W2099547629 cites W1964699038 @default.
- W2099547629 cites W1968372207 @default.
- W2099547629 cites W1969170514 @default.
- W2099547629 cites W1973351483 @default.
- W2099547629 cites W1974698144 @default.
- W2099547629 cites W1977443421 @default.
- W2099547629 cites W1977917057 @default.
- W2099547629 cites W1979252406 @default.
- W2099547629 cites W1981524462 @default.
- W2099547629 cites W1983543499 @default.
- W2099547629 cites W1987488517 @default.
- W2099547629 cites W1988075634 @default.
- W2099547629 cites W1988686356 @default.
- W2099547629 cites W1988916147 @default.
- W2099547629 cites W1991102567 @default.
- W2099547629 cites W1991461069 @default.
- W2099547629 cites W1994493474 @default.
- W2099547629 cites W1994589769 @default.
- W2099547629 cites W1999929623 @default.
- W2099547629 cites W2000068428 @default.
- W2099547629 cites W2000976884 @default.
- W2099547629 cites W2002335991 @default.
- W2099547629 cites W2004590903 @default.
- W2099547629 cites W2010205304 @default.
- W2099547629 cites W2012645756 @default.
- W2099547629 cites W2015548052 @default.
- W2099547629 cites W2019113499 @default.
- W2099547629 cites W2020313271 @default.
- W2099547629 cites W2021207726 @default.
- W2099547629 cites W2024765986 @default.
- W2099547629 cites W2025164824 @default.
- W2099547629 cites W2026159733 @default.
- W2099547629 cites W2026451892 @default.
- W2099547629 cites W2029729989 @default.
- W2099547629 cites W2029921733 @default.
- W2099547629 cites W2031093241 @default.
- W2099547629 cites W2031501508 @default.
- W2099547629 cites W2035718516 @default.
- W2099547629 cites W2036895361 @default.
- W2099547629 cites W2038161375 @default.
- W2099547629 cites W2041433842 @default.
- W2099547629 cites W2046863495 @default.
- W2099547629 cites W2047843902 @default.
- W2099547629 cites W2049247955 @default.
- W2099547629 cites W2053013933 @default.
- W2099547629 cites W2058409867 @default.
- W2099547629 cites W2058752499 @default.
- W2099547629 cites W2059805206 @default.
- W2099547629 cites W2061499594 @default.
- W2099547629 cites W2063125504 @default.
- W2099547629 cites W2065116362 @default.
- W2099547629 cites W2065880090 @default.
- W2099547629 cites W2066385271 @default.
- W2099547629 cites W2067153599 @default.
- W2099547629 cites W2070753398 @default.
- W2099547629 cites W2076077791 @default.
- W2099547629 cites W2077651848 @default.
- W2099547629 cites W2077798331 @default.
- W2099547629 cites W2078020735 @default.
- W2099547629 cites W2081535110 @default.
- W2099547629 cites W2082506167 @default.
- W2099547629 cites W2084353086 @default.
- W2099547629 cites W2088242348 @default.
- W2099547629 cites W2088406906 @default.
- W2099547629 cites W2090131196 @default.
- W2099547629 cites W2090717198 @default.
- W2099547629 cites W2091701994 @default.
- W2099547629 cites W2094857781 @default.
- W2099547629 cites W2099087206 @default.
- W2099547629 cites W2100776582 @default.
- W2099547629 cites W2104711881 @default.
- W2099547629 cites W2107169302 @default.
- W2099547629 cites W2110362798 @default.
- W2099547629 cites W2112752310 @default.
- W2099547629 cites W2115453505 @default.
- W2099547629 cites W2115809823 @default.
- W2099547629 cites W2116552092 @default.
- W2099547629 cites W2118021020 @default.
- W2099547629 cites W2120628869 @default.
- W2099547629 cites W2120912731 @default.
- W2099547629 cites W2133233737 @default.
- W2099547629 cites W2135478653 @default.
- W2099547629 cites W2139247058 @default.
- W2099547629 cites W2139960762 @default.
- W2099547629 cites W2143117392 @default.
- W2099547629 cites W2143124873 @default.
- W2099547629 cites W2147102474 @default.
- W2099547629 cites W2148542993 @default.
- W2099547629 cites W2154608492 @default.