Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099641946> ?p ?o ?g. }
- W2099641946 endingPage "528" @default.
- W2099641946 startingPage "519" @default.
- W2099641946 abstract "Colloidal phases in natural waters may be important to various environmental questions, especially those concerning the cycling of vital and toxic trace chemicals. Current treatments of the role of colloids in chemical speciation largely rely on operational definitions of phases such as l,OOO-Da ultrafilter and 0.45pm filter cut-offs. Defining chemical phases exclusively by a physical parameter such as size is contributing to a situation where the observed filterable vs. unfilterablc distribution coefficients, D, are not well predicted from thermodynamically derived sorbed vs. solute equilibrium constants, K. Achieving the goal of relating the natural distributions of chemicals to theoretical expectations is contingent upon progress in development of a functionally meaningful colloid definition and interpretation of observed distributions of trace substances in terms of the relevant physicochemical propertics of the system. We assess the phase status of typical components in natural waters from a “chemcentric” point of view (i.e. one whose motivation is to understand the cycling of trace chemicals in the environment). As a result, we define colloids so as to provide a thermodynamic grounding for evaluating chemical speciation and a hydrodynamic framework distinguishing phases that are transported with the solution from those that are not. These constraints lead one to define an aquatic colloid as any constituent that provides a molecular milieu into and onto which chemicals can escape from the aqueous solution, and whose movement is not significantly affected by gravitational settling. Such a definition allows development of mass balance equations, suited to assessing chemical fates, that reflect processes uniquely acting on dissolved, colloidal, or settling particle phases. For aquatic scientists concerned with the behavior and effects of trace chemicals, one important process is the partitioning of those trace constituents between the dissolved and bound pools. The resulting speciation affects the extent to which the chemical participates in various transport and transformation processes. For example, one may anticipate that the truly dissolved trace molecules may participate in homogeneous solution phase reactions, while this is not true for their counterparts sorbed to colloids (particles “immune to gravity”; Graham 1861) or settling particles (henceforth referred to as gravitoids). Such sorbed species may be less bioavailable and may exhibit different photoreactivity than their solution-phase counterparts. Likewise, for transport processes, one may anticipate that dissolved and colloidbound molecules are carried with the moving fluid (e.g. in sediment porewater irrigation), while the gravitoid fraction may fall out of a mixed water body to loci below. Distinguishing among these functionally distinct forms is essential if we are to elucidate the cycling and effects of trace chemicals in natural waters. Recently, efforts to quantify the roles of colloids in the cycling of trace compounds have been confounded by the realization that results obtained by the most common sampling technique, cross-flow ultrafiltration (CFF), are operator and equipment dependent (Buesseler et al. 1996). CFF also appears to cause undesired fractionation of colloidal com" @default.
- W2099641946 created "2016-06-24" @default.
- W2099641946 creator A5009657112 @default.
- W2099641946 creator A5025625806 @default.
- W2099641946 date "1997-05-01" @default.
- W2099641946 modified "2023-10-16" @default.
- W2099641946 title "Aquatic colloids: Concepts, definitions, and current challenges" @default.
- W2099641946 cites W1479963809 @default.
- W2099641946 cites W1492486543 @default.
- W2099641946 cites W1600870734 @default.
- W2099641946 cites W1971060772 @default.
- W2099641946 cites W1976914616 @default.
- W2099641946 cites W1977436538 @default.
- W2099641946 cites W1983026648 @default.
- W2099641946 cites W1984605905 @default.
- W2099641946 cites W1984666475 @default.
- W2099641946 cites W1988653532 @default.
- W2099641946 cites W1989007264 @default.
- W2099641946 cites W1993648066 @default.
- W2099641946 cites W1995680098 @default.
- W2099641946 cites W1997920379 @default.
- W2099641946 cites W2003124271 @default.
- W2099641946 cites W2005643557 @default.
- W2099641946 cites W2008501065 @default.
- W2099641946 cites W2015370149 @default.
- W2099641946 cites W2016673562 @default.
- W2099641946 cites W2016969072 @default.
- W2099641946 cites W2017117460 @default.
- W2099641946 cites W2019680977 @default.
- W2099641946 cites W2023617567 @default.
- W2099641946 cites W2024527468 @default.
- W2099641946 cites W2035018754 @default.
- W2099641946 cites W2037961538 @default.
- W2099641946 cites W2040058617 @default.
- W2099641946 cites W2045511289 @default.
- W2099641946 cites W2046513457 @default.
- W2099641946 cites W2051611630 @default.
- W2099641946 cites W2052285124 @default.
- W2099641946 cites W2063647008 @default.
- W2099641946 cites W2066488080 @default.
- W2099641946 cites W2068629687 @default.
- W2099641946 cites W2072237516 @default.
- W2099641946 cites W2073222520 @default.
- W2099641946 cites W2074189233 @default.
- W2099641946 cites W2076641329 @default.
- W2099641946 cites W2082978327 @default.
- W2099641946 cites W2088444013 @default.
- W2099641946 cites W2091251998 @default.
- W2099641946 cites W2095026341 @default.
- W2099641946 cites W2096920036 @default.
- W2099641946 cites W2119247348 @default.
- W2099641946 cites W2124614417 @default.
- W2099641946 cites W2152374790 @default.
- W2099641946 cites W2153279992 @default.
- W2099641946 cites W2153340036 @default.
- W2099641946 cites W2160372997 @default.
- W2099641946 cites W2171410646 @default.
- W2099641946 cites W2176364073 @default.
- W2099641946 cites W2239741587 @default.
- W2099641946 cites W2809206978 @default.
- W2099641946 cites W292444583 @default.
- W2099641946 cites W3016228221 @default.
- W2099641946 cites W3092217728 @default.
- W2099641946 cites W2995274203 @default.
- W2099641946 doi "https://doi.org/10.4319/lo.1997.42.3.0519" @default.
- W2099641946 hasPublicationYear "1997" @default.
- W2099641946 type Work @default.
- W2099641946 sameAs 2099641946 @default.
- W2099641946 citedByCount "276" @default.
- W2099641946 countsByYear W20996419462012 @default.
- W2099641946 countsByYear W20996419462013 @default.
- W2099641946 countsByYear W20996419462014 @default.
- W2099641946 countsByYear W20996419462015 @default.
- W2099641946 countsByYear W20996419462016 @default.
- W2099641946 countsByYear W20996419462017 @default.
- W2099641946 countsByYear W20996419462018 @default.
- W2099641946 countsByYear W20996419462019 @default.
- W2099641946 countsByYear W20996419462020 @default.
- W2099641946 countsByYear W20996419462021 @default.
- W2099641946 countsByYear W20996419462022 @default.
- W2099641946 countsByYear W20996419462023 @default.
- W2099641946 crossrefType "journal-article" @default.
- W2099641946 hasAuthorship W2099641946A5009657112 @default.
- W2099641946 hasAuthorship W2099641946A5025625806 @default.
- W2099641946 hasConcept C111368507 @default.
- W2099641946 hasConcept C127313418 @default.
- W2099641946 hasConcept C127413603 @default.
- W2099641946 hasConcept C148043351 @default.
- W2099641946 hasConcept C183696295 @default.
- W2099641946 hasConcept C39432304 @default.
- W2099641946 hasConcept C41008148 @default.
- W2099641946 hasConcept C539667460 @default.
- W2099641946 hasConceptScore W2099641946C111368507 @default.
- W2099641946 hasConceptScore W2099641946C127313418 @default.
- W2099641946 hasConceptScore W2099641946C127413603 @default.
- W2099641946 hasConceptScore W2099641946C148043351 @default.
- W2099641946 hasConceptScore W2099641946C183696295 @default.
- W2099641946 hasConceptScore W2099641946C39432304 @default.