Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099665091> ?p ?o ?g. }
- W2099665091 endingPage "291" @default.
- W2099665091 startingPage "282" @default.
- W2099665091 abstract "A distributed lag model (DLagM) is a regression model that includes lagged exposure variables as covariates; its corresponding distributed lag (DL) function describes the relationship between the lag and the coefficient of the lagged exposure variable. DLagMs have recently been used in environmental epidemiology for quantifying the cumulative effects of weather and air pollution on mortality and morbidity. Standard methods for formulating DLagMs include unconstrained, polynomial, and penalized spline DLagMs. These methods may fail to take full advantage of prior information about the shape of the DL function for environmental exposures, or for any other exposure with effects that are believed to smoothly approach zero as lag increases, and are therefore at risk of producing suboptimal estimates. In this article, we propose a Bayesian DLagM (BDLagM) that incorporates prior knowledge about the shape of the DL function and also allows the degree of smoothness of the DL function to be estimated from the data. We apply our BDLagM to its motivating data from the National Morbidity, Mortality, and Air Pollution Study to estimate the short-term health effects of particulate matter air pollution on mortality from 1987 to 2000 for Chicago, Illinois. In a simulation study, we compare our Bayesian approach with alternative methods that use unconstrained, polynomial, and penalized spline DLagMs. We also illustrate the connection between BDLagMs and penalized spline DLagMs. Software for fitting BDLagM models and the data used in this article are available online." @default.
- W2099665091 created "2016-06-24" @default.
- W2099665091 creator A5000968299 @default.
- W2099665091 creator A5007008626 @default.
- W2099665091 creator A5021289199 @default.
- W2099665091 creator A5023824672 @default.
- W2099665091 date "2008-04-16" @default.
- W2099665091 modified "2023-09-24" @default.
- W2099665091 title "Bayesian Distributed Lag Models: Estimating Effects of Particulate Matter Air Pollution on Daily Mortality" @default.
- W2099665091 cites W1423766661 @default.
- W2099665091 cites W1583042891 @default.
- W2099665091 cites W1663329593 @default.
- W2099665091 cites W1909880584 @default.
- W2099665091 cites W1977456601 @default.
- W2099665091 cites W1977937028 @default.
- W2099665091 cites W1988093972 @default.
- W2099665091 cites W1990420052 @default.
- W2099665091 cites W2000504769 @default.
- W2099665091 cites W2004701632 @default.
- W2099665091 cites W2016659043 @default.
- W2099665091 cites W2020848637 @default.
- W2099665091 cites W2027746897 @default.
- W2099665091 cites W2033873777 @default.
- W2099665091 cites W2034486344 @default.
- W2099665091 cites W2035351190 @default.
- W2099665091 cites W2038717962 @default.
- W2099665091 cites W2049633456 @default.
- W2099665091 cites W2063412862 @default.
- W2099665091 cites W2065540158 @default.
- W2099665091 cites W2075359649 @default.
- W2099665091 cites W2082227738 @default.
- W2099665091 cites W2109356853 @default.
- W2099665091 cites W2113905249 @default.
- W2099665091 cites W2118011760 @default.
- W2099665091 cites W2122781931 @default.
- W2099665091 cites W2124129856 @default.
- W2099665091 cites W2128810168 @default.
- W2099665091 cites W2134434400 @default.
- W2099665091 cites W2135481801 @default.
- W2099665091 cites W2157448961 @default.
- W2099665091 cites W2479390720 @default.
- W2099665091 doi "https://doi.org/10.1111/j.1541-0420.2007.01039.x" @default.
- W2099665091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18422792" @default.
- W2099665091 hasPublicationYear "2008" @default.
- W2099665091 type Work @default.
- W2099665091 sameAs 2099665091 @default.
- W2099665091 citedByCount "69" @default.
- W2099665091 countsByYear W20996650912012 @default.
- W2099665091 countsByYear W20996650912013 @default.
- W2099665091 countsByYear W20996650912014 @default.
- W2099665091 countsByYear W20996650912015 @default.
- W2099665091 countsByYear W20996650912016 @default.
- W2099665091 countsByYear W20996650912017 @default.
- W2099665091 countsByYear W20996650912018 @default.
- W2099665091 countsByYear W20996650912019 @default.
- W2099665091 countsByYear W20996650912020 @default.
- W2099665091 countsByYear W20996650912021 @default.
- W2099665091 countsByYear W20996650912022 @default.
- W2099665091 countsByYear W20996650912023 @default.
- W2099665091 crossrefType "journal-article" @default.
- W2099665091 hasAuthorship W2099665091A5000968299 @default.
- W2099665091 hasAuthorship W2099665091A5007008626 @default.
- W2099665091 hasAuthorship W2099665091A5021289199 @default.
- W2099665091 hasAuthorship W2099665091A5023824672 @default.
- W2099665091 hasConcept C10390562 @default.
- W2099665091 hasConcept C105795698 @default.
- W2099665091 hasConcept C107673813 @default.
- W2099665091 hasConcept C119043178 @default.
- W2099665091 hasConcept C120068334 @default.
- W2099665091 hasConcept C127413603 @default.
- W2099665091 hasConcept C134306372 @default.
- W2099665091 hasConcept C149782125 @default.
- W2099665091 hasConcept C152877465 @default.
- W2099665091 hasConcept C159009313 @default.
- W2099665091 hasConcept C160234255 @default.
- W2099665091 hasConcept C18903297 @default.
- W2099665091 hasConcept C194648359 @default.
- W2099665091 hasConcept C31258907 @default.
- W2099665091 hasConcept C33923547 @default.
- W2099665091 hasConcept C41008148 @default.
- W2099665091 hasConcept C559116025 @default.
- W2099665091 hasConcept C66938386 @default.
- W2099665091 hasConcept C75778745 @default.
- W2099665091 hasConcept C83546350 @default.
- W2099665091 hasConcept C86803240 @default.
- W2099665091 hasConcept C90119067 @default.
- W2099665091 hasConceptScore W2099665091C10390562 @default.
- W2099665091 hasConceptScore W2099665091C105795698 @default.
- W2099665091 hasConceptScore W2099665091C107673813 @default.
- W2099665091 hasConceptScore W2099665091C119043178 @default.
- W2099665091 hasConceptScore W2099665091C120068334 @default.
- W2099665091 hasConceptScore W2099665091C127413603 @default.
- W2099665091 hasConceptScore W2099665091C134306372 @default.
- W2099665091 hasConceptScore W2099665091C149782125 @default.
- W2099665091 hasConceptScore W2099665091C152877465 @default.
- W2099665091 hasConceptScore W2099665091C159009313 @default.
- W2099665091 hasConceptScore W2099665091C160234255 @default.
- W2099665091 hasConceptScore W2099665091C18903297 @default.