Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099681619> ?p ?o ?g. }
- W2099681619 endingPage "2335" @default.
- W2099681619 startingPage "2309" @default.
- W2099681619 abstract "Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience." @default.
- W2099681619 created "2016-06-24" @default.
- W2099681619 creator A5003609825 @default.
- W2099681619 creator A5034290522 @default.
- W2099681619 creator A5055812530 @default.
- W2099681619 date "2009-08-01" @default.
- W2099681619 modified "2023-10-09" @default.
- W2099681619 title "Information-Geometric Measures as Robust Estimators of Connection Strengths and External Inputs" @default.
- W2099681619 cites W1520168181 @default.
- W2099681619 cites W1570751785 @default.
- W2099681619 cites W1580901834 @default.
- W2099681619 cites W1945974928 @default.
- W2099681619 cites W1969769253 @default.
- W2099681619 cites W1972053361 @default.
- W2099681619 cites W1973752972 @default.
- W2099681619 cites W1990540817 @default.
- W2099681619 cites W1991266025 @default.
- W2099681619 cites W2007495909 @default.
- W2099681619 cites W2014744085 @default.
- W2099681619 cites W2049830283 @default.
- W2099681619 cites W2081170324 @default.
- W2099681619 cites W2089136440 @default.
- W2099681619 cites W2093616568 @default.
- W2099681619 cites W2097230740 @default.
- W2099681619 cites W2101660706 @default.
- W2099681619 cites W2103243650 @default.
- W2099681619 cites W2116399098 @default.
- W2099681619 cites W2119624849 @default.
- W2099681619 cites W2130506326 @default.
- W2099681619 cites W2142373488 @default.
- W2099681619 cites W2151694082 @default.
- W2099681619 cites W2163532659 @default.
- W2099681619 cites W2164908099 @default.
- W2099681619 cites W2165088448 @default.
- W2099681619 cites W2166963621 @default.
- W2099681619 cites W2168919237 @default.
- W2099681619 cites W4247612853 @default.
- W2099681619 doi "https://doi.org/10.1162/neco.2009.04-08-748" @default.
- W2099681619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19538092" @default.
- W2099681619 hasPublicationYear "2009" @default.
- W2099681619 type Work @default.
- W2099681619 sameAs 2099681619 @default.
- W2099681619 citedByCount "13" @default.
- W2099681619 countsByYear W20996816192012 @default.
- W2099681619 countsByYear W20996816192014 @default.
- W2099681619 countsByYear W20996816192016 @default.
- W2099681619 countsByYear W20996816192018 @default.
- W2099681619 countsByYear W20996816192021 @default.
- W2099681619 countsByYear W20996816192022 @default.
- W2099681619 crossrefType "journal-article" @default.
- W2099681619 hasAuthorship W2099681619A5003609825 @default.
- W2099681619 hasAuthorship W2099681619A5034290522 @default.
- W2099681619 hasAuthorship W2099681619A5055812530 @default.
- W2099681619 hasConcept C105795698 @default.
- W2099681619 hasConcept C109546454 @default.
- W2099681619 hasConcept C11413529 @default.
- W2099681619 hasConcept C12520029 @default.
- W2099681619 hasConcept C13355873 @default.
- W2099681619 hasConcept C136764020 @default.
- W2099681619 hasConcept C154945302 @default.
- W2099681619 hasConcept C185429906 @default.
- W2099681619 hasConcept C195065555 @default.
- W2099681619 hasConcept C2524010 @default.
- W2099681619 hasConcept C2778753846 @default.
- W2099681619 hasConcept C31243852 @default.
- W2099681619 hasConcept C31258907 @default.
- W2099681619 hasConcept C33923547 @default.
- W2099681619 hasConcept C34947359 @default.
- W2099681619 hasConcept C41008148 @default.
- W2099681619 hasConcept C48372109 @default.
- W2099681619 hasConcept C49777392 @default.
- W2099681619 hasConcept C50644808 @default.
- W2099681619 hasConcept C80444323 @default.
- W2099681619 hasConcept C94375191 @default.
- W2099681619 hasConceptScore W2099681619C105795698 @default.
- W2099681619 hasConceptScore W2099681619C109546454 @default.
- W2099681619 hasConceptScore W2099681619C11413529 @default.
- W2099681619 hasConceptScore W2099681619C12520029 @default.
- W2099681619 hasConceptScore W2099681619C13355873 @default.
- W2099681619 hasConceptScore W2099681619C136764020 @default.
- W2099681619 hasConceptScore W2099681619C154945302 @default.
- W2099681619 hasConceptScore W2099681619C185429906 @default.
- W2099681619 hasConceptScore W2099681619C195065555 @default.
- W2099681619 hasConceptScore W2099681619C2524010 @default.
- W2099681619 hasConceptScore W2099681619C2778753846 @default.
- W2099681619 hasConceptScore W2099681619C31243852 @default.
- W2099681619 hasConceptScore W2099681619C31258907 @default.
- W2099681619 hasConceptScore W2099681619C33923547 @default.
- W2099681619 hasConceptScore W2099681619C34947359 @default.
- W2099681619 hasConceptScore W2099681619C41008148 @default.
- W2099681619 hasConceptScore W2099681619C48372109 @default.
- W2099681619 hasConceptScore W2099681619C49777392 @default.
- W2099681619 hasConceptScore W2099681619C50644808 @default.
- W2099681619 hasConceptScore W2099681619C80444323 @default.
- W2099681619 hasConceptScore W2099681619C94375191 @default.
- W2099681619 hasIssue "8" @default.
- W2099681619 hasLocation W20996816191 @default.
- W2099681619 hasLocation W20996816192 @default.