Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099687412> ?p ?o ?g. }
- W2099687412 endingPage "38870" @default.
- W2099687412 startingPage "38861" @default.
- W2099687412 abstract "Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: kcat = 5.5 s-1, K1/2,Mt = 0.7 μm, and Km,ATP = 25 μm; and for Eg5-437: kcat = 2.9 s-1, K1/2,Mt = 4.5 μm, and Km,ATP = 19 μm. 2′(3′)-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 μm-1s-1, followed immediately by ATP hydrolysis at 15 s-1. ATP-dependent Mt·Eg5 dissociation was relatively slow and rate-limiting at 8 s-1 with mantADP release at 40 s-1. Surprisingly, Eg5-367 binds microtubules more effectively (11 μm-1s-1) than Eg5-437 (0.7 μm-1s-1), consistent with the steady-state K1/2,Mt and the mantADP release K1/2,Mt. These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover. Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: kcat = 5.5 s-1, K1/2,Mt = 0.7 μm, and Km,ATP = 25 μm; and for Eg5-437: kcat = 2.9 s-1, K1/2,Mt = 4.5 μm, and Km,ATP = 19 μm. 2′(3′)-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 μm-1s-1, followed immediately by ATP hydrolysis at 15 s-1. ATP-dependent Mt·Eg5 dissociation was relatively slow and rate-limiting at 8 s-1 with mantADP release at 40 s-1. Surprisingly, Eg5-367 binds microtubules more effectively (11 μm-1s-1) than Eg5-437 (0.7 μm-1s-1), consistent with the steady-state K1/2,Mt and the mantADP release K1/2,Mt. These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover. Eukaryotic cell division requires proper assembly and maintenance of the bipolar spindle, an intricate protein complex composed of a dynamic array of microtubules and microtubule-based motor proteins (reviewed in Refs. 1Inoue S. J. Struct. Biol. 1997; 118: 87-93Crossref PubMed Scopus (21) Google Scholar, 2Compton D.A. Annu. Rev. Biochem. 2000; 69: 95-114Crossref PubMed Scopus (232) Google Scholar, 3Mitchison T.J. Salmon E.D. Nat. Cell Biol. 2001; 3: E17-E21Crossref PubMed Scopus (196) Google Scholar, 4Wittmann T. Hyman A. Desai A. Nat. Cell Biol. 2001; 3: E28-E34Crossref PubMed Scopus (424) Google Scholar, 5Karsenti E. Vernos I. Science. 2001; 294: 543-547Crossref PubMed Scopus (384) Google Scholar, 6Scholey J.M. Brust-Mascher I. Mogilner A. Nature. 2003; 422: 746-752Crossref PubMed Scopus (233) Google Scholar, 7Nedelec F. Surrey T. Karsenti E. Curr. Opin. Cell Biol. 2003; 15: 118-124Crossref PubMed Scopus (110) Google Scholar). Bipolar spindle formation requires a specific balance between counteracting forces generated by cytoplasmic dynein and several subfamilies of kinesin-related proteins to organize and position opposite spindle poles (8Gaglio T. Saredi A. Bingham J.B. Hasbani M.J. Gill S.R. Schroer T.A. Compton D.A. J. Cell Biol. 1996; 135: 399-414Crossref PubMed Scopus (259) Google Scholar, 9Saunders W. Lengyel V. Hoyt M.A. Mol. Biol. Cell. 1997; 8: 1025-1033Crossref PubMed Scopus (133) Google Scholar, 10Sharp D.J. Yu K.R. Sisson J.C. Sullivan W. Scholey J.M. Nat. Cell Biol. 1999; 1: 51-54Crossref PubMed Scopus (197) Google Scholar, 11Mountain V. Simerly C. Howard L. Ando A. Schatten G. Compton D.A. J. Cell Biol. 1999; 147: 351-366Crossref PubMed Scopus (268) Google Scholar, 12Cytrynbaum E.N. Scholey J.M. Mogilner A. Biophys. J. 2003; 84: 757-769Abstract Full Text Full Text PDF PubMed Scopus (81) Google Scholar, 13Goshima G. Vale R.D. J. Cell Biol. 2003; 162: 1003-1016Crossref PubMed Scopus (318) Google Scholar, 14Chakravarty A. Howard L. Compton D.A. Mol. Biol. Cell. 2004; 15: 2116-2132Crossref PubMed Scopus (47) Google Scholar, 15Kwon M. Scholey J.M. Trends Cell Biol. 2004; 14: 194-205Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar). The BimC kinesins (16Enos A.P. Morris N.R. Cell. 1990; 60: 1019-1027Abstract Full Text PDF PubMed Scopus (309) Google Scholar, 17Le Guellec R. Paris J. Couturier A. Roghi C. Philippe M. Mol. Cell. Biol. 1991; 11: 3395-3398Crossref PubMed Scopus (131) Google Scholar, 18Sawin K.E. LeGuellec K. Philippe M. Mitchison T.J. Nature. 1992; 359: 540-543Crossref PubMed Scopus (537) Google Scholar, 19Roof D.M. Meluh P.B. Rose M.D. J. Cell Biol. 1992; 118: 95-108Crossref PubMed Scopus (286) Google Scholar, 20Hoyt M.A. He L. Loo K.K. Saunders W.S. J. Cell Biol. 1992; 118: 109-120Crossref PubMed Scopus (335) Google Scholar, 21Hagan I. Yanagida M. Nature. 1992; 356: 74-76Crossref PubMed Scopus (200) Google Scholar, 22Saunders W.S. Hoyt M.A. Cell. 1992; 70: 451-458Abstract Full Text PDF PubMed Scopus (315) Google Scholar, 23Blangy A. Lane H.A. d'Herin P. Harper M. Kress M. Nigg E.A. Cell. 1995; 83: 1159-1169Abstract Full Text PDF PubMed Scopus (788) Google Scholar, 24Sawin K.E. Mitchison T.J. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4289-4293Crossref PubMed Scopus (228) Google Scholar, 25Kashina A.S. Baskin R.J. Cole D.G. Wedaman K.P. Saxton W.M. Scholey J.M. Nature. 1996; 379: 270-272Crossref PubMed Scopus (305) Google Scholar) contribute to the plus-end-directed force necessary to separate microtubule asters, thus aiding in the establishment and maintenance of the bipolar spindle. Electron microscopy studies of a BimC family member (DmKLP61F) suggest that these kinesins exhibit a unique homotetrameric structure with two N-terminal motor domains positioned at each end of a coiled-coil stalk, thus facilitating the ability to interact with and slide adjacent microtubules (25Kashina A.S. Baskin R.J. Cole D.G. Wedaman K.P. Saxton W.M. Scholey J.M. Nature. 1996; 379: 270-272Crossref PubMed Scopus (305) Google Scholar, 26Cole D.G. Saxton W.M. Sheehan K.B. Scholey J.M. J. Biol. Chem. 1994; 269: 22913-22916Abstract Full Text PDF PubMed Google Scholar, 27Sharp D.J. McDonald K.L. Brown H.M. Matthies H.J. Walczak C. Vale R.D. Mitchison T.J. Scholey J.M. J. Cell Biol. 1999; 144: 125-138Crossref PubMed Scopus (253) Google Scholar). Homo sapiens Eg5/KSP, the human homologue of Xenopus Eg5, is a slow, plus-end-directed BimC kinesin that has been shown to localize along interpolar spindle microtubules and at the spindle poles (24Sawin K.E. Mitchison T.J. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4289-4293Crossref PubMed Scopus (228) Google Scholar, 28Lockhart A. Cross R.A. Biochemistry. 1996; 35: 2365-2373Crossref PubMed Scopus (60) Google Scholar, 29Blangy A. Arnaud L. Nigg E.A. J. Biol. Chem. 1997; 272: 19418-19424Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar). This spindle association is regulated by the cell cycle-dependent phosphorylation of a single threonine within a highly conserved region of the Eg5 tail domain by p34cdc2 protein kinase (23Blangy A. Lane H.A. d'Herin P. Harper M. Kress M. Nigg E.A. Cell. 1995; 83: 1159-1169Abstract Full Text PDF PubMed Scopus (788) Google Scholar, 24Sawin K.E. Mitchison T.J. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4289-4293Crossref PubMed Scopus (228) Google Scholar, 29Blangy A. Arnaud L. Nigg E.A. J. Biol. Chem. 1997; 272: 19418-19424Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar). Monastrol, a small, cell-permeable molecule, can reversibly inhibit the function of Eg5 to arrest cells in mitosis, providing a useful model for anti-mitotic drug design (30Mayer T.U. Kapoor T.M. Haggarty S.J. King R.W. Schreiber S.L. Mitchison T.J. Science. 1999; 286: 971-974Crossref PubMed Scopus (1630) Google Scholar, 31Kapoor T.M. Mayer T.U. Coughlin M.L. Mitchison T.J. J. Cell Biol. 2000; 150: 975-988Crossref PubMed Scopus (574) Google Scholar, 32Kapoor T.M. Mitchison T.J. J. Cell Biol. 2001; 154: 1125-1133Crossref PubMed Scopus (136) Google Scholar, 33Maliga Z. Kapoor T.M. Mitchison T.J. Chem. Biol. 2002; 9: 989-996Abstract Full Text Full Text PDF PubMed Scopus (257) Google Scholar, 34DeBonis S. Simorre J.P. Crevel I. Lebeau L. Skoufias D.A. Blangy A. Ebel C. Gans P. Cross R. Hackney D.D. Wade R.H. Kozielski F. Biochemistry. 2003; 42: 338-349Crossref PubMed Scopus (173) Google Scholar, 35Yan Y. Sardana V. Xu B. Homnick C. Halczenko W. Buser C.A. Schaber M. Hartman G.D. Huber H.E. Kuo L.C. J. Mol. Biol. 2004; 335: 547-554Crossref PubMed Scopus (198) Google Scholar). There are remarkable structural similarities in the catalytic core domain of Eg5, Kar3, Ncd, and conventional kinesin (35Yan Y. Sardana V. Xu B. Homnick C. Halczenko W. Buser C.A. Schaber M. Hartman G.D. Huber H.E. Kuo L.C. J. Mol. Biol. 2004; 335: 547-554Crossref PubMed Scopus (198) Google Scholar, 36Turner J. Anderson R. Guo J. Beraud C. Fletterick R. Sakowicz R. J. Biol. Chem. 2001; 276: 25496-25502Abstract Full Text Full Text PDF PubMed Scopus (190) Google Scholar, 37Sablin E.P. Kull F.J. Cooke R. Vale R.D. Fletterick R.J. Nature. 1996; 380: 555-559Crossref PubMed Scopus (324) Google Scholar, 38Kull F.J. Sablin E.P. Lau R. Fletterick R.J. Vale R.D. Nature. 1996; 380: 550-555Crossref PubMed Scopus (581) Google Scholar, 39Sack S. Muller J. Marx A. Thormahlen M. Mandelkow E.M. Brady S.T. Mandelkow E. Biochemistry. 1997; 36: 16155-16165Crossref PubMed Scopus (181) Google Scholar, 40Gulick A.M. Song H. Endow S.A. Rayment I. Biochemistry. 1998; 37: 1769-1776Crossref PubMed Scopus (89) Google Scholar, 41Yun M. Zhang X. Park C.G. Park H.W. Endow S.A. EMBO J. 2001; 20: 2611-2618Crossref PubMed Scopus (87) Google Scholar), yet these proteins exhibit different characteristics in vitro and different cellular functions in vivo (13Goshima G. Vale R.D. J. Cell Biol. 2003; 162: 1003-1016Crossref PubMed Scopus (318) Google Scholar, 42Goldstein L.S. Philp A.V. Annu. Rev. Cell Dev. Biol. 1999; 15: 141-183Crossref PubMed Scopus (217) Google Scholar, 43Vale R.D. Milligan R.A. Science. 2000; 288: 88-95Crossref PubMed Scopus (1249) Google Scholar, 44Miki H. Setou M. Kaneshiro K. Hirokawa N. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 7004-7011Crossref PubMed Scopus (486) Google Scholar, 45Vale R.D. Cell. 2003; 112: 467-480Abstract Full Text Full Text PDF PubMed Scopus (1526) Google Scholar, 46Schliwa M. Woehlke G. Nature. 2003; 422: 759-765Crossref PubMed Scopus (832) Google Scholar). Each of these kinesins has been shown to function through a characteristic cyclic interaction with the microtubule (Scheme 1) whereby the nucleotide state at the active site modulates the affinity of the motor for the microtubule. The kinetic mechanisms of conventional kinesin, Ncd, and Kar3 have been extensively studied (28Lockhart A. Cross R.A. Biochemistry. 1996; 35: 2365-2373Crossref PubMed Scopus (60) Google Scholar, 47Hackney D.D. J. Biol. Chem. 1994; 269: 16508-16511Abstract Full Text PDF PubMed Google Scholar, 48Gilbert S.P. Johnson K.A. Biochemistry. 1994; 33: 1951-1960Crossref PubMed Scopus (86) Google Scholar, 49Gilbert S.P. Webb M.R. Brune M. Johnson K.A. Nature. 1995; 373: 671-676Crossref PubMed Scopus (248) Google Scholar, 50Schnitzer M.J. Block S.M. Nature. 1997; 388: 386-390Crossref PubMed Scopus (646) Google Scholar, 51Hua W. Young E.C. Fleming M.L. Gelles J. Nature. 1997; 388: 390-393Crossref PubMed Scopus (281) Google Scholar, 52Ma Y.Z. Taylor E.W. J. Biol. Chem. 1997; 272: 724-730Abstract Full Text Full Text PDF PubMed Scopus (166) Google Scholar, 53Gilbert S.P. Moyer M.L. Johnson K.A. Biochemistry. 1998; 37: 792-799Crossref PubMed Scopus (154) Google Scholar, 54Moyer M.L. Gilbert S.P. Johnson K.A. Biochemistry. 1998; 37: 800-813Crossref PubMed Scopus (127) Google Scholar, 55Rice S. Lin A.W. Safer D. Hart C.L. Naber N. Carragher B.O. Cain S.M. Pechatnikova E. Wilson-Kubalek E.M. Whittaker M. Pate E. Cooke R. Taylor E.W. Milligan R.A. Vale R.D. Nature. 1999; 402: 778-784Crossref PubMed Scopus (650) Google Scholar, 56Farrell C.M. Mackey A.T. Klumpp L.M. Gilbert S.P. J. Biol. Chem. 2002; 277: 17079-17087Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar, 57Hackney D.D. Biochemistry. 2002; 41: 4437-4446Crossref PubMed Scopus (39) Google Scholar, 58Rosenfeld S.S. Xing J. Jefferson G.M. Cheung H.C. King P.H. J. Biol. Chem. 2002; 277: 36731-36739Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar, 59Rosenfeld S.S. Fordyce P.M. Jefferson G.M. King P.H. Block S.M. J. Biol. Chem. 2003; 278: 18550-18556Abstract Full Text Full Text PDF PubMed Scopus (158) Google Scholar, 60Uemura S. Ishiwata S. Nat. Struct. Biol. 2003; 10: 308-311Crossref PubMed Scopus (103) Google Scholar, 61Kaseda K. Higuchi H. Hirose K. Nat. Cell Biol. 2003; 5: 1079-1082Crossref PubMed Scopus (155) Google Scholar, 62Asbury C.L. Fehr A.N. Block S.M. Science. 2003; 302: 2130-2134Crossref PubMed Scopus (443) Google Scholar, 63Schief W.R. Clark R.H. Crevenna A.H. Howard J. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 1183-1188Crossref PubMed Scopus (97) Google Scholar, 64Yildiz A. Tomishige M. Vale R.D. Selvin P.R. Science. 2004; 303: 676-678Crossref PubMed Scopus (761) Google Scholar, 65Klumpp L.M. Hoenger A. Gilbert S.P. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3444-3449Crossref PubMed Scopus (96) Google Scholar, 66Crevel I.M. Nyitrai M. Alonso M.C. Weiss S. Geeves M.A. Cross R.A. EMBO J. 2004; 23: 23-32Crossref PubMed Scopus (73) Google Scholar, 67Foster K.A. Correia J.J. Gilbert S.P. J. Biol. Chem. 1998; 273: 35307-35318Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar, 68Pechatnikova E. Taylor E.W. J. Biol. Chem. 1997; 272: 30735-30740Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar, 69Pechatnikova E. Taylor E.W. Biophys. J. 1999; 77: 1003-1016Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar, 70Mackey A.T. Gilbert S.P. Biochemistry. 2000; 39: 1346-1355Crossref PubMed Scopus (25) Google Scholar, 71Foster K.A. Mackey A.T. Gilbert S.P. J. Biol. Chem. 2001; 276: 19259-19266Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar, 72Mackey A.T. Gilbert S.P. J. Biol. Chem. 2003; 278: 3527-3535Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar, 73Crevel I.M. Lockhart A. Cross R.A. J. Mol. Biol. 1997; 273: 160-170Crossref PubMed Scopus (79) Google Scholar). The aim of this study was to establish the kinetic basis of force generation of Eg5 in direct comparison to conventional kinesin and other well characterized spindle motors, Kar3 and Ncd. We have utilized kinetic and thermodynamic approaches to define the mechanochemistry of two truncated human Eg5 motors, Eg5-367 and Eg5-437. Eg5-367, containing the N-terminal 367 amino acids, represents a single Eg5 catalytic domain (33Maliga Z. Kapoor T.M. Mitchison T.J. Chem. Biol. 2002; 9: 989-996Abstract Full Text Full Text PDF PubMed Scopus (257) Google Scholar, 35Yan Y. Sardana V. Xu B. Homnick C. Halczenko W. Buser C.A. Schaber M. Hartman G.D. Huber H.E. Kuo L.C. J. Mol. Biol. 2004; 335: 547-554Crossref PubMed Scopus (198) Google Scholar, 36Turner J. Anderson R. Guo J. Beraud C. Fletterick R. Sakowicz R. J. Biol. Chem. 2001; 276: 25496-25502Abstract Full Text Full Text PDF PubMed Scopus (190) Google Scholar). Surprisingly, we found that Eg5-437, designed to yield a dimeric motor, is monomeric based on results from sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation as well as analytical gel filtration. The kinetics and equilibrium binding characteristics for Eg5 presented here reveal a unique ATPase mechanism more similar to KinN kinesins, such as conventional kinesin, compared with the well studied KinC spindle motors, Kar3 and Ncd. Experimental Conditions—Experiments were performed at 25 °C in ATPase buffer (20 mm Hepes, pH 7.2, with KOH, 5 mm magnesium acetate, 0.1 mm EDTA, 0.1 mm EGTA, 50 mm potassium acetate, 1 mm dithiothreitol, 5% sucrose). All concentrations reported for experiments are final after mixing. Expression and Purification of Eg5—We have expressed two human Eg5 constructs as described previously (33Maliga Z. Kapoor T.M. Mitchison T.J. Chem. Biol. 2002; 9: 989-996Abstract Full Text Full Text PDF PubMed Scopus (257) Google Scholar). Eg5-367 contains the N-terminal 367 amino acids, Met1-Gln367 followed by a His6 tag (molecular mass = 41.7 kDa without MgADP and 42.1 kDa with MgADP), and Eg5-437 contains the N-terminal 437 amino acids, Met1-Thr437, followed by a His6 tag (molecular mass = 49.8 kDa without MgADP and 50.2 kDa with MgADP). Both recombinant Eg5 motors were expressed in the Escherichia coli cell line BL21-CodonPlus(DE3)-RIL (Stratagene, La Jolla, CA) and purified using column chromatography. Briefly, cells were diluted after induction to 1 g/6 ml in lysis buffer (10 mm sodium phosphate buffer, pH 7.2, 20 mm NaCl, 2 mm MgCl2, 1 mm EGTA, 1 mm dithiothreitol, 2 mm phenylmethylsulfonyl fluoride). The soluble cell lysate was loaded onto a 100-ml S-Sepharose (Sigma-Aldrich Co.) column to select for the Eg5 motor domain. Eg5 was eluted from the S-Sepharose column using a linear NaCl gradient (20-600 mm NaCl). Fractions enriched in Eg5 were pooled and dialyzed against nickel-nitrilotriacetic acid buffer (10 mm sodium phosphate buffer, pH 7.2, 20 mm NaCl, 2 mm MgCl2, 0.1 mm EGTA, 1 mm dithiothreitol, 0.02 mm ATP). The dialysate was loaded onto a 5-ml nickel-nitrilotriacetic acid-agarose (Qiagen, Valencia, CA) column, and Eg5 was eluted using a linear imidazole gradient (0-200 mm imidazole). Fractions enriched in Eg5 were pooled and dialyzed against ATPase buffer plus 200 mm NaCl to remove the imidazole. The dialysate was concentrated by ultrafiltration (Millipore Centriprep 30, Bedford, MA) and further dialyzed against ATPase buffer with 5% sucrose. We determined the Eg5 protein concentration by the Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc.) with IgG as the protein standard. This purification method yielded 40-150 mg of Eg5 protein per 30 g of E. coli cells at >99% purity. Microtubules for Kinetic Experiments—Microtubules were prepared from bovine brain tubulin, and on the day of each experiment an aliquot of tubulin was thawed, cycled, and stabilized with 20 μm Taxol (paclitaxel, Sigma-Aldrich Co.). Analytical Ultracentrifugation—Sedimentation velocity experiments were conducted at 42,000 rpm, and a sedimentation equilibrium experiment was carried out at 17,000 rpm in a Beckman Optima XLA analytical ultracentrifuge (Beckman Coulter Inc., Fullerton, CA) equipped with absorbance optics and an An60Ti rotor. Velocity and equilibrium data were collected at a wavelength of 235 nm. The conditions for sedimentation velocity experiments included ATPase buffer with and without 50 μm AMP-PNP 1The abbreviations used are: AMP-PNP, adenosine 5′-(β,γ-imino)-triphosphate; Mt, microtubule; mant, 2′(3′)-O-(N-methylanthraniloyl); AXP, ATP or ADP; GST, glutathione S-transferase. (a non-hydrolyzable ATP analog) at 25 °C (Fig. 1A). Velocity data were analyzed by DCDT+ (version 1.15) (74Philo J.S. Anal. Biochem. 2000; 279: 151-163Crossref PubMed Scopus (239) Google Scholar) as described previously (75Correia J.J. Gilbert S.P. Moyer M.L. Johnson K.A. Biochemistry. 1995; 34: 4898-4907Crossref PubMed Scopus (51) Google Scholar) and, where appropriate, SVEDBERG (version 6.39) (76Philo J.S. Biophys. J. 1997; 72: 435-444Abstract Full Text PDF PubMed Scopus (215) Google Scholar) to verify the results. The reported weight average sedimentation coefficient values (s20,w) obtained from DCDT+ were corrected for the solution density and viscosity (75Correia J.J. Gilbert S.P. Moyer M.L. Johnson K.A. Biochemistry. 1995; 34: 4898-4907Crossref PubMed Scopus (51) Google Scholar) and were calculated by a weighted integration over the entire range of sedimentation coefficients covered by the g(s) distribution. Equilibrium data were analyzed by NONLIN (version 1.035) as described previously (75Correia J.J. Gilbert S.P. Moyer M.L. Johnson K.A. Biochemistry. 1995; 34: 4898-4907Crossref PubMed Scopus (51) Google Scholar). Gel Filtration and Stokes Radii Calculations—Purified proteins were resolved by using a Superose-6 HR 10/30 gel filtration column (Amersham Biosciences) equilibrated in ATPase buffer at 25 °C using the System Gold high-pressure liquid chromatography system (Beckman Coulter Inc.) (Fig. 1B). The elution volumes (Ve) of proteins were determined by intrinsic protein fluorescence detection (Jasco FP-2020, Victoria, British Columbia). The Stokes radii (Rs) of Eg5-367, Eg5-437, and Drosophila kinesin heavy chain (K401) were calculated as described previously (77Patel S.S. Hingorani M.M. J. Biol. Chem. 1993; 268: 10668-10675Abstract Full Text PDF PubMed Google Scholar). Briefly, the partition coefficients (Kav) were calculated for four standard proteins of known Stokes radii (Rs): ovalbumin, 3.05 nm; aldolase, 4.81 nm; catalase, 5.22 nm; and ferritin, 6.10 nm. The apparent Stokes radius of each motor was determined from interpolation of a semilog plot of the markers Kavversus the known Rs of the markers (see Table I).Table IPhysical properties of Eg5 motorsProteinPolypeptide molecular massaThe monomer polypeptide with MgADP bound was determined from the amino acid sequence and nucleotide molecular mass (Da).RsbRs is the Stokes radius (nm) determined by analytical gel filtration.s20,wcS20,w is the sedimentation coefficient determined from sedimentation velocity experiments.Calculated molecular massdThe molecular mass (Da) was calculated as described (86).Association stateDaDaEg5-36742,1192.86NDeND, not determined.NDMonomerEg5-43750,2173.373.4948,229MonomerK40145,5314.795.0691,902Dimera The monomer polypeptide with MgADP bound was determined from the amino acid sequence and nucleotide molecular mass (Da).b Rs is the Stokes radius (nm) determined by analytical gel filtration.c S20,w is the sedimentation coefficient determined from sedimentation velocity experiments.d The molecular mass (Da) was calculated as described (86Siegel L.M. Monty K.J. Biochim. Biophys. Acta. 1966; 112: 346-362Crossref PubMed Scopus (1547) Google Scholar).e ND, not determined. Open table in a new tab Phosphocreatine Kinase Coupled Assay—The concentration of active Eg5 sites was determined by performing phosphocreatine kinase coupled assays as previously described (78Gilbert S.P. Mackey A.T. Methods. 2000; 22: 337-354Crossref PubMed Scopus (67) Google Scholar). Briefly, Eg5 (5 μm final concentration) was incubated with trace amounts of [α-32P]ATP for 90 min to convert all radiolabeled ATP to ADP (data not shown). In some experiments, additional non-radiolabeled ADP was then added to yield a final concentration of 5-15 μm [α-32P]ADP. The Eg5·[α-32P]ADP complex was combined with a creatine kinase/phosphocreatine-based ATP regeneration system to convert unbound [α-32P]ADP to [α-32P]ATP. However, ADP tightly bound at the Eg5 active site was inaccessible to the creatine kinase and therefore protected from enzymatic conversion to ATP. This assay measures the Eg5 concentration based on ADP tightly bound at the Eg5 active site. The protected [α-32P]ADP was quantified as a function of time by incubating the Eg5·[α-32P]ADP complex with the regeneration system with or without 2.5 mm unlabeled MgATP (Fig 2A). Each data set was fit to the following single exponential function, [ADP]=A exp(−kofft)+C(Eq. 1) where the active site concentration is the sum of the amplitude (A) and the constant term (C) to extrapolate to zero time (t). In the experiment with excess unlabeled MgATP, koff is the first-order rate constant for ADP release in the absence of microtubules. Steady-State ATPase Kinetics—Eg5 steady-state ATPase activity was determined by following [α-32P]ATP hydrolysis to form [α-32P]ADP·Pi as previously described (78Gilbert S.P. Mackey A.T. Methods. 2000; 22: 337-354Crossref PubMed Scopus (67) Google Scholar). In Fig. 2B, the rate of ATP turnover was plotted as a function of microtubule concentration, and the data were fit to the following quadratic equation,Rate=0.5×kcat×{(E0+K1/2,Mt+Mt0)−[(E0+K1/2,Mt+Mt0)2−(4E0Mt0)]1/2}(Eq. 2) where the Rate is the amount of hydrolysis product formed per second per active site, kcat is the maximum rate constant of product formation at saturating substrate, E0 is the Eg5 site concentration, K1/2,Mt is the tubulin concentration as microtubules needed to provide one-half the maximal velocity, and Mt0 is the microtubule concentration. Mt·Eg5 Cosedimentation Assays—Eg5 at 2 μm was incubated with varying microtubule concentrations (0-6 μm tubulin) in the absence (Fig. 3A) or presence (Fig. 3C) of increasing MgADP concentrations for 30 min, followed by centrifugation in a Beckman Airfuge (Beckman Coulter Inc.) at 30 p.s.i. (100,000 × g) for 30 min as described previously (67Foster K.A. Correia J.J. Gilbert S.P. J. Biol. Chem. 1998; 273: 35307-35318Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar). The microtubule pellet was resuspended in ATPase buffer to equal the volume of the supernatant. Gel samples for the pellet and supernatant were prepared in 5× Laemmli sample buffer, and the proteins were resolved by SDS-PAGE, followed by staining with Coomassie Brilliant Blue R-250. The gels were analyzed with a Scan Maker X6EL scanner (Microtek, Carson, CA), and the proteins were quantified using National Institutes of Health Image (version 1.62) to determine the fraction of Eg5 in the supernatant and pellet at each microtubule concentration. The fraction of Eg5 that partitioned to the pellet was plotted as a function of microtubule concentration (Fig. 3A), and the data were fit to the following quadratic equation,Mt·E/E0=0.5×{(E0+Kd+Mt0)−[(E0+Kd+Mt0)2−(4E0Mt0)]1/2}(Eq. 3) where Mt·E/E0 is the fraction of Eg5 partitioning with the microtubule pellet, E0 is total Eg5 concentration, Kd is the dissociation constant, and Mt0 is the microtubule concentration. For Fig. 3C, the fraction of Eg5 that partitioned to the pellet was plotted as a function of MgADP concentration. Mt·Eg5·[α-32P]ADP Cosedimentation Assays—Eg5 at 5 μm was incubated with microtubules (6 and 8 μm tubulin for Eg5-367 and Eg5-437, respectively) and with varying concentrations of radiolabeled MgADP (2.5-100 μm) for 30 min as described previously (72Mackey A.T. Gilbert S.P. J. Biol. Chem. 2003; 278: 3527-3535Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar). The reaction mixture was centrifuged, the supernatant was removed, the unwashed pellet was resuspended in 4 n NaOH, and the volume of the pellet was adjusted with buffer to equal the volume of the supernatant. Control reactions were performed at each microtubule concentration in the absence of Eg5 to determine the amount of radiolabeled nucleotide that was non-specifically trapped in the microtubule pellet. The concentration of [α-32P]ADP for each Mt·Eg5 reaction was corrected for [α-32P]ADP that partitioned with microtubules in the absence of motor. Fig. 3B shows the data fit to the following quadratic equation,Mt·E·ADP=0.5×{(E0+Kd+ADP)−[(E0+Kd+ADP)2−(4E0ADP)]1/2}(Eq. 4) where Mt·E·ADP is the concentration of ADP bound to the Mt·Eg5 complex, E0 is total Eg5, ADP is the total nucleotide present, and Kd is the dissociation constant for ADP. Acid-quench Experiment—The pre-steady-state kinetics of MgATP hydrolysis for Eg5 in the presence of microtubules was defined in this assay. A preformed Mt·Eg5 complex was rapidly mixed with varying concentrations of radiolabeled MgATP plus 100 mm KCl in a quench-flow instrument (Kintek Corp., Austin, TX). We added the additional salt in the ATP syringe to lower steady-state turnover without affecting the pre-steady-state burst of product formation (Fig. 5A). The reaction was incubated (from 10 ms to 1 s) and quenched with formic acid, and radiolabeled product formation was quantified after separating [α-32P]ADP plus Pi from unreacted [α-32P]ATP by thin layer chromatography (78Gilbert S.P. Mackey A.T. Methods. 2000; 22: 337-354Crossref PubMed Scopus (67) Google Scholar). The concentration of [α-32P]ADP was plotted as a function of time (Fig. 5B), and the data were fit to the following burst equation,Product=(A×[1−exp(−kbt)])+ksst(Eq. 5) where A is the amplitude of the initial rapid exponential phase, which corresponds to the formation of [α-32P]ADP·Pi at the Eg5 active site during the first turnover, kb is the rate constant of the exponential burst phase, t is time in seconds, and kss is the rate constant of the linear phase (μm ADP·s-1) corresponding to steady-state turnover. The exponential rate of the pre-steady-state burst (kb) and burst amplitude (A) (Fig. 5C) were plotted as a function of MgATP concentration, and each data set was fit to a hyperbola. Pulse-chase Experiment—This experiment measures the time course of the formation of a kinetically stable Mt·Eg5·ATP intermediate prior to ATP hydrolysis (48Gilbert S.P. Johnson K.A. Biochemistry. 1994; 33: 1951-1960Crossref PubMed Scopus (86) Google Scholar). In these experiments, the time course of ATP turnover (from 10 ms to 1 s) was measured by chasing the Mt·Eg5·[α-32P]ATP intermediate with ∼5 mm MgATP (15 mm MgATP in the quench syringe) for 4 s (8-10 half-lives) in the quench-flow instrument. The reaction mixture was terminated with formic acid, and the radiolabeled product was quantified. The data in Fig. 6 (A and C) were fit to Equation 3, and each data set in Fig. 6B was fit to a hyperbola. Stopped-flow Experiments—The pre-steady-state kinetics of mantAT" @default.
- W2099687412 created "2016-06-24" @default.
- W2099687412 creator A5011691413 @default.
- W2099687412 creator A5025092515 @default.
- W2099687412 creator A5030146315 @default.
- W2099687412 creator A5030698367 @default.
- W2099687412 creator A5032173655 @default.
- W2099687412 creator A5038982579 @default.
- W2099687412 date "2004-09-01" @default.
- W2099687412 modified "2023-10-14" @default.
- W2099687412 title "Mechanistic Analysis of the Mitotic Kinesin Eg5" @default.
- W2099687412 cites W1487040228 @default.
- W2099687412 cites W1507086201 @default.
- W2099687412 cites W1511309214 @default.
- W2099687412 cites W1523096427 @default.
- W2099687412 cites W1531287894 @default.
- W2099687412 cites W1578627625 @default.
- W2099687412 cites W1595209923 @default.
- W2099687412 cites W1618955965 @default.
- W2099687412 cites W1619209825 @default.
- W2099687412 cites W1882922344 @default.
- W2099687412 cites W1965166916 @default.
- W2099687412 cites W1965192923 @default.
- W2099687412 cites W1966790730 @default.
- W2099687412 cites W1966881434 @default.
- W2099687412 cites W1969098247 @default.
- W2099687412 cites W1969636343 @default.
- W2099687412 cites W1971128922 @default.
- W2099687412 cites W1972667017 @default.
- W2099687412 cites W1977666960 @default.
- W2099687412 cites W1983998286 @default.
- W2099687412 cites W1985668694 @default.
- W2099687412 cites W1985701763 @default.
- W2099687412 cites W1987314485 @default.
- W2099687412 cites W1988678729 @default.
- W2099687412 cites W1989054182 @default.
- W2099687412 cites W1992271499 @default.
- W2099687412 cites W1998589171 @default.
- W2099687412 cites W2000315199 @default.
- W2099687412 cites W2000409657 @default.
- W2099687412 cites W2001978459 @default.
- W2099687412 cites W2003537255 @default.
- W2099687412 cites W2003766812 @default.
- W2099687412 cites W2006124934 @default.
- W2099687412 cites W2006876135 @default.
- W2099687412 cites W2009009462 @default.
- W2099687412 cites W2012647275 @default.
- W2099687412 cites W2016518842 @default.
- W2099687412 cites W2026566036 @default.
- W2099687412 cites W2027250972 @default.
- W2099687412 cites W2027532431 @default.
- W2099687412 cites W2029178312 @default.
- W2099687412 cites W2033276495 @default.
- W2099687412 cites W2035472375 @default.
- W2099687412 cites W2037624113 @default.
- W2099687412 cites W2039199785 @default.
- W2099687412 cites W2040795998 @default.
- W2099687412 cites W2043341507 @default.
- W2099687412 cites W2043447781 @default.
- W2099687412 cites W2052132055 @default.
- W2099687412 cites W2055611040 @default.
- W2099687412 cites W2056217914 @default.
- W2099687412 cites W2056438029 @default.
- W2099687412 cites W2057915370 @default.
- W2099687412 cites W2062496406 @default.
- W2099687412 cites W2072495256 @default.
- W2099687412 cites W2076839443 @default.
- W2099687412 cites W2080111827 @default.
- W2099687412 cites W2085659615 @default.
- W2099687412 cites W2096526911 @default.
- W2099687412 cites W2097613703 @default.
- W2099687412 cites W2102145519 @default.
- W2099687412 cites W2106568827 @default.
- W2099687412 cites W2108422673 @default.
- W2099687412 cites W2111661564 @default.
- W2099687412 cites W2120810427 @default.
- W2099687412 cites W2124188072 @default.
- W2099687412 cites W2126277736 @default.
- W2099687412 cites W2126969704 @default.
- W2099687412 cites W2127645433 @default.
- W2099687412 cites W2128350011 @default.
- W2099687412 cites W2131227198 @default.
- W2099687412 cites W2133492742 @default.
- W2099687412 cites W2134666283 @default.
- W2099687412 cites W2137939426 @default.
- W2099687412 cites W2140920816 @default.
- W2099687412 cites W2143997493 @default.
- W2099687412 cites W2149578350 @default.
- W2099687412 cites W2151034868 @default.
- W2099687412 cites W2155004688 @default.
- W2099687412 cites W2155672945 @default.
- W2099687412 cites W2158375677 @default.
- W2099687412 cites W2162800498 @default.
- W2099687412 cites W2407629009 @default.
- W2099687412 cites W4211203651 @default.
- W2099687412 cites W4255712990 @default.
- W2099687412 doi "https://doi.org/10.1074/jbc.m404203200" @default.
- W2099687412 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1356567" @default.