Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099692767> ?p ?o ?g. }
- W2099692767 endingPage "24234" @default.
- W2099692767 startingPage "24221" @default.
- W2099692767 abstract "The NASA GTE TRACE A mission sampled air over the South Atlantic and western Indian Oceans. Thirteen flight legs were flown within the marine boundary layer (MBL). The MBL was typically the cleanest air sampled (e.g., CH 4 < 1680 ppb, CO < 70 ppb, C 2 H 6 < 400 ppt, C 3 H 8 < 40 ppt, NO x < 15 ppt, and midday NO < 5 ppt) but was overlain by polluted air. The photochemistry of the MBL was influenced by oceanic emissions, surface deposition, and entrainment of pollutants from aloft. Chemical budgets were constructed for several species in the MBL in order to investigate these effects and are presented for ethane, ethylene, propane, propylene, n ‐butane, formic acid (HFo), methylhydroperoxide (CH 3 OOH), oxides of nitrogen (i.e., NO, NO 2 , PAN, HNO 3 ), hydrogen peroxide (H 2 O 2 ), and ozone (O 3 ). A photochemical point model was used to evaluate local chemical production and loss. An entrainment model was used to assess material exchange between the lower free troposphere (FT) and the MBL and a resistance deposition model was used to evaluate material exchange across the air‐sea interface. The results suggested the ocean to be the source of measured alkenes in the MBL and to be the most likely source of the shorter‐lived alkanes: propane and n ‐butane. Ethane was the only hydrocarbon for which input from aloft may have exceeded its photochemical destruction. The estimated hydrocarbon sources from the ocean were in agreement with prior analyses. Transport from the lower FT together with surface loss could not account for measured concentrations of CH 2 O, HFo, and HNO 3 . The transport of peroxyacetylnitrate (PAN) from the FT to the MBL exceeded the rate of HNO 3 production and was more than sufficient to maintain observed NO x levels without having to invoke an oceanic source for NO. The flux of NO x , PAN, and HNO 3 was in balance with the surface deposition flux of HNO 3 . However, the predicted rates of HNO 3 formation from the oxidation of NO 2 and HNO 3 entrainment from aloft were inadequate to maintain observed levels of HNO 3 unless HNO 3 was partitioned between the gas phase and a more slowly depositing aerosol phase. The estimated dry deposition flux of HNO 3 to the South Atlantic during TRACE A, 2–4 × 10 9 molecules cm −2 s −1 , was about 10 times the annual average estimate for this region. The destruction of O 3 within the MBL was found to be exceeded by transport into the MBL from aloft, 6 ± 2 × 10 10 compared to 11 ± 10 × 10 10 molecules cm −2 s −1 . The principal O 3 destruction process was mediated by the formation and surface deposition of H 2 O 2 and CH 3 OOH, 4 ± 4 × 10 10 and 1.1 ± 0.5 × 10 10 molecules cm −2 s −1 . The direct loss of O 3 to the sea surface was estimated to be 1.7 ± 0.2 × 10 10 molecules cm −2 s −1 . CH 3 OOH was lost to the sea and transported into the FT from the MBL. Its first‐order loss rate was estimated to be 7 × 10 −6 s −1 for a mean MBL height of 700 m. H 2 O 2 and CH 2 O losses from the MBL were estimated at rates of 1.3 × 10 −5 s −1 for both species. The inclusion of surface deposition improved the agreement between predicted and measured concentrations of HNO 3 , CH 3 OOH, H 2 O 2 , and CH 2 O. However, model CH 2 O remained significantly greater than that measured in the MBL." @default.
- W2099692767 created "2016-06-24" @default.
- W2099692767 creator A5011740304 @default.
- W2099692767 creator A5018843232 @default.
- W2099692767 creator A5044782365 @default.
- W2099692767 creator A5046694694 @default.
- W2099692767 creator A5050666158 @default.
- W2099692767 creator A5057026519 @default.
- W2099692767 creator A5080309209 @default.
- W2099692767 creator A5086746430 @default.
- W2099692767 creator A5086863058 @default.
- W2099692767 creator A5090638918 @default.
- W2099692767 date "1996-10-01" @default.
- W2099692767 modified "2023-09-26" @default.
- W2099692767 title "Ozone, hydroperoxides, oxides of nitrogen, and hydrocarbon budgets in the marine boundary layer over the South Atlantic" @default.
- W2099692767 cites W1978788984 @default.
- W2099692767 cites W1984724212 @default.
- W2099692767 cites W1985842505 @default.
- W2099692767 cites W1989438093 @default.
- W2099692767 cites W1992027337 @default.
- W2099692767 cites W2007653319 @default.
- W2099692767 cites W2008475387 @default.
- W2099692767 cites W2009470133 @default.
- W2099692767 cites W2012781514 @default.
- W2099692767 cites W2015267534 @default.
- W2099692767 cites W2017511513 @default.
- W2099692767 cites W2025498983 @default.
- W2099692767 cites W2033342466 @default.
- W2099692767 cites W2033513017 @default.
- W2099692767 cites W2036988505 @default.
- W2099692767 cites W2039759359 @default.
- W2099692767 cites W2042609807 @default.
- W2099692767 cites W2047031932 @default.
- W2099692767 cites W2047766767 @default.
- W2099692767 cites W2054478615 @default.
- W2099692767 cites W2054606365 @default.
- W2099692767 cites W2055768018 @default.
- W2099692767 cites W2066576366 @default.
- W2099692767 cites W2068657344 @default.
- W2099692767 cites W2069689943 @default.
- W2099692767 cites W2077759781 @default.
- W2099692767 cites W2078503122 @default.
- W2099692767 cites W2078578198 @default.
- W2099692767 cites W2078957869 @default.
- W2099692767 cites W2083133115 @default.
- W2099692767 cites W2085303535 @default.
- W2099692767 cites W2088532751 @default.
- W2099692767 cites W2088866805 @default.
- W2099692767 cites W2089316225 @default.
- W2099692767 cites W2091514777 @default.
- W2099692767 cites W2099821347 @default.
- W2099692767 cites W2104535926 @default.
- W2099692767 cites W2106109190 @default.
- W2099692767 cites W2112695004 @default.
- W2099692767 cites W2123449592 @default.
- W2099692767 cites W2138816024 @default.
- W2099692767 cites W2142180479 @default.
- W2099692767 cites W2148569453 @default.
- W2099692767 cites W2155704085 @default.
- W2099692767 cites W2162040766 @default.
- W2099692767 cites W2162111967 @default.
- W2099692767 cites W2164081755 @default.
- W2099692767 cites W2167134255 @default.
- W2099692767 cites W2172433237 @default.
- W2099692767 cites W2174374600 @default.
- W2099692767 cites W2324797957 @default.
- W2099692767 cites W2484466355 @default.
- W2099692767 cites W3083311034 @default.
- W2099692767 cites W4242513471 @default.
- W2099692767 doi "https://doi.org/10.1029/95jd03631" @default.
- W2099692767 hasPublicationYear "1996" @default.
- W2099692767 type Work @default.
- W2099692767 sameAs 2099692767 @default.
- W2099692767 citedByCount "103" @default.
- W2099692767 countsByYear W20996927672012 @default.
- W2099692767 countsByYear W20996927672013 @default.
- W2099692767 countsByYear W20996927672014 @default.
- W2099692767 countsByYear W20996927672015 @default.
- W2099692767 countsByYear W20996927672016 @default.
- W2099692767 countsByYear W20996927672017 @default.
- W2099692767 countsByYear W20996927672018 @default.
- W2099692767 countsByYear W20996927672020 @default.
- W2099692767 countsByYear W20996927672021 @default.
- W2099692767 countsByYear W20996927672022 @default.
- W2099692767 crossrefType "journal-article" @default.
- W2099692767 hasAuthorship W2099692767A5011740304 @default.
- W2099692767 hasAuthorship W2099692767A5018843232 @default.
- W2099692767 hasAuthorship W2099692767A5044782365 @default.
- W2099692767 hasAuthorship W2099692767A5046694694 @default.
- W2099692767 hasAuthorship W2099692767A5050666158 @default.
- W2099692767 hasAuthorship W2099692767A5057026519 @default.
- W2099692767 hasAuthorship W2099692767A5080309209 @default.
- W2099692767 hasAuthorship W2099692767A5086746430 @default.
- W2099692767 hasAuthorship W2099692767A5086863058 @default.
- W2099692767 hasAuthorship W2099692767A5090638918 @default.
- W2099692767 hasBestOaLocation W20996927672 @default.
- W2099692767 hasConcept C105923489 @default.
- W2099692767 hasConcept C107872376 @default.