Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099846952> ?p ?o ?g. }
- W2099846952 endingPage "12401" @default.
- W2099846952 startingPage "12397" @default.
- W2099846952 abstract "Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-γ 2 (PLC-γ2), leading to increased inositol phospholipid turnover. PLC-γ2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-γ2. B-cells rendered BTK-deficient by targeted disruption of thebtk gene did not show enhanced PLC-γ2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells. Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-γ 2 (PLC-γ2), leading to increased inositol phospholipid turnover. PLC-γ2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-γ2. B-cells rendered BTK-deficient by targeted disruption of thebtk gene did not show enhanced PLC-γ2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells. A number of epidemiologic studies suggested the possibility that EMF 1The abbreviations used are: EMF, electromagnetic field(s); SYK, spleen tyrosine kinase; PLC, phospholipase C; Ins-1,4,5-P3, inositol-1,4,5-trisphosphate; PH, pleckstrin homology; SI, stimulation index. radiation from residentially proximate power lines, household electrical wiring, and appliance usage may contribute to the risk of childhood acute lymphoblastic leukemia (1Savitz D.A. Wachtel H. Barnes F.A. John E.M. Tvrdik J.G. Am. J. Epidemiol. 1988; 128: 21-38Crossref PubMed Scopus (654) Google Scholar, 2Cartwright R.A. Br. J. Cancer. 1989; 60: 649-651Crossref PubMed Scopus (27) Google Scholar, 3Tornqvist A. Knave B. Ahlbom A. Persson T. Br. J. Ind. Med. 1991; 48: 597-603PubMed Google Scholar, 4Guenel P. Raskmark P. Anderson J., B. Lynge E. Br. J. Ind. Med. 1993; 50: 758-764PubMed Google Scholar, 5Demers P.A. Thomas D.B. Rosenblatt K.A. Jimenez L.M. McTiernan A. Stalsberg H. Stemhagen A. Thompson W.D. Curnen M.G. Satariano W. Austin D.F. Isacson P. Greenberg R.S. Key C. Kolonel L.N. West D.W. Am. J. Epidemiol. 1991; 134: 340-347Crossref PubMed Scopus (187) Google Scholar). A recent study by Linet et al. (6Linet M.S. Hatch E.E. Kleinerman R.A. Robison L.L. Kaune W.T. Friedman D.R. Severson R.K. Haines C.M. Hartsock C.T. Niwa S. Wacholder S. Tarone R.E. N. Engl. J. Med. 1997; 337: 1-7Crossref PubMed Scopus (360) Google Scholar) showed that living in homes characterized by high measured time-weighted average magnetic field levels or by the highest wire code category does not increase the risk of acute lymphoblastic leukemia in children. However, concerns regarding other forms of EMF exposure remain. Since no directly genotoxic effects are exerted by EMF, it is thought that EMF may participate in leukemogenesis of childhood acute lymphoblastic leukemia by influencing their proliferation, survival, and/or differentiation programs (7Zhang X.R. Kobayashi H. Hayakawa A. Ishigaki T. Nagoya J. Med. Sci. 1995; 58: 157-164PubMed Google Scholar, 8Norimura T. Imada H. Kunugita N. J. UOEH. 1993; 15: 103-112Crossref PubMed Scopus (30) Google Scholar, 9Kobayashi H. Ishigaki T. Annu. Res. Nagoya Univ. Hosp. 1994; 28: 39-42Google Scholar). In a recent study, we discovered that exposure of B-lineage lymphoid cells to low energy EMF stimulates the Src protooncogene family protein tyrosine kinase, LYN, leading to downstream activation of protein kinase C (10Uckun F.M. Kurosaki T. Jin J. Jun X. Morgan A. Takata M. Bolen J. Luben R. J. Biol. Chem. 1995; 270: 27666-27670Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar). These results prompted the hypothesis that a delicate growth regulatory balance might be altered in B-lineage lymphoid cells by EMF-induced activation of LYN kinase. In a subsequent study, we examined the molecular mechanism of enhanced inositol phospholipid turnover in lymphoma B-cells exposed to low energy EMF (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar). Our findings were consistent with a sequential activation model according to which EMF exposure first leads to activation of Src family protein tyrosine kinases. Src family protein tyrosine kinases domains interact with and phosphorylate as yet unidentified immunoreceptor tyrosine-based activation motifs, leading to recruitment of spleen tyrosine kinase (SYK) as well as PLC-γ2 via their Src homology (SH2) domains to the phosphorylated immunoreceptor tyrosine-based activation motifs. Subsequently, SYK is activated by Src family protein tyrosine kinases and phosphorylates PLC-γ2 leading to its activation. Activation of PLC-γ2 results in increased inositol phospholipid turnover, production of inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) and protein kinase C activation (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar). BTK is a member of the Src-related TEC family of PTKs (12Rawlings D.J. Witte O.N. Immunol. Rev. 1994; 138: 105-119Crossref PubMed Scopus (102) Google Scholar, 13Bolen J.B. Curr. Opin. Immunol. 1995; 7: 306-311Crossref PubMed Scopus (104) Google Scholar), and its enzymatic activity is regulated by LYN kinase (14Mahajan S. Fargnoli J. Burkhardt A.L. Kut S.A. Saouaf S.J. Bolen J.B. Mol. Cell. Biol. 1995; 15: 5304-5311Crossref PubMed Scopus (135) Google Scholar, 15Rawlings D.J. Scharenberg A.M. Park H. Wahl M.I. Lin S. Kato R.M. Fuckiger A.-C. Witte O.N. Kinet J.-P. Science. 1996; 271: 822-825Crossref PubMed Scopus (381) Google Scholar). Mutations in the btk gene have been linked to severe developmental blocks in human B-cell ontogeny, resulting in human X-linked agammaglobulinemia (16Smith C.I. Islam K.B. Vorechovsky I. Olerup O. Wallin E. Rabbani H. Baskin B. Hammarstrom L. Immunol. Rev. 1994; 138: 159-183Crossref PubMed Scopus (113) Google Scholar, 17Rawlings D.J. Saffran D.C. Tsukada S. Largaespada D.A. Grimaldi J.C. Cohen L. Mohr R.N. Bazan J.F. Howard M. Copeland N.G. Jenkins N.A. Witte O.N. Science. 1993; 261: 358-361Crossref PubMed Scopus (781) Google Scholar, 18Khan W.N. Alt F.W. Gerstein R.M. Malynn B.A. Larsson I. Rathbun G. Davidson L. Müller S. Kantor A.B. Herzenberg L.A. Rosen F.S. Sideras P. Immunity. 1995; 3: 283-299Abstract Full Text PDF PubMed Scopus (642) Google Scholar). BTK was also identified as the mediator of apoptosis in B-lineage lymphoid cells exposed to ionizing radiation (19Uckun F.M. Waddick K.G. Mahajan S. Jun X. Takata M. Bolen J. Kurosaki T. Science. 1996; 273: 1096-1100Crossref PubMed Scopus (167) Google Scholar). Recent evidence suggests an important role for BTK in the regulation of PLC-γ2 activity level (20Takata M. Kurosaki T. J. Exp. Med. 1996; 184: 31-40Crossref PubMed Scopus (426) Google Scholar). The concerted actions of both BTK and SYK are required for the B-cell antigen receptor-induced PLC-γ2 activation (20Takata M. Kurosaki T. J. Exp. Med. 1996; 184: 31-40Crossref PubMed Scopus (426) Google Scholar). Therefore, we decided to examine the potential participation of BTK in EMF-induced activation of PLC-γ2. Here, we show that low energy EMF exposure initiates a biochemical signaling cascade intimately linked to BTK. Our study provides unprecedented experimental evidence that BTK is the mediator of EMF-induced enhanced inositol phospholipid turnover in lymphoma B-cells. The establishment and characterization of wild-type and BTK-deficient, LYN-deficient, and SYK-deficient clones of DT40 chicken lymphoma B-cells were reported previously (19Uckun F.M. Waddick K.G. Mahajan S. Jun X. Takata M. Bolen J. Kurosaki T. Science. 1996; 273: 1096-1100Crossref PubMed Scopus (167) Google Scholar, 20Takata M. Kurosaki T. J. Exp. Med. 1996; 184: 31-40Crossref PubMed Scopus (426) Google Scholar, 21Kurosaki T. Johnson S.A. Pao L. Sada K. Yamamura H. Cambier J.C. J. Exp. Med. 1995; 182: 1815-1823Crossref PubMed Scopus (225) Google Scholar, 22Takata M. Sabe H. Hata A. Inazu T. Homma Y. Nukada T. Yamamura H. Kurosaki T. EMBO J. 1994; 13: 1341-1349Crossref PubMed Scopus (589) Google Scholar, 23Takata M. Homma Y. Kurosaki T. J. Exp. Med. 1995; 182: 907-914Crossref PubMed Scopus (183) Google Scholar, 24Kurosaki T. Takata M. Yamanashi Y. Inazu T. Taniguchi T. Yamamoto T. Yamamura H. J. Exp. Med. 1994; 179: 1725-1729Crossref PubMed Scopus (254) Google Scholar, 25Nagai K. Takata M. Yamamura H. Kurosaki T. J. Biol. Chem. 1995; 270: 6824-6829Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar). Wild-type and mutant cells were maintained in suspension cultures at 37 °C, 5% CO2 in a humidified incubator. The culture medium was RPMI 1640 (Life Technologies, Inc.), supplemented with 10% fetal calf serum, 2.5% chicken serum, 10 mml-glutamine, and 50 mm 2-mercaptoethanol as described previously (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 19Uckun F.M. Waddick K.G. Mahajan S. Jun X. Takata M. Bolen J. Kurosaki T. Science. 1996; 273: 1096-1100Crossref PubMed Scopus (167) Google Scholar). A homogeneous vertical magnetic field was set up by using a Merritt's coil-based in vitro low frequency EMF exposure system (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar). Merritt's four square coil system is known to produce a large volume of uniform magnetic field. Unless otherwise indicated, the applied vertical sinusoidal 60-Hz field was 0.1 millitesla (1 gauss). The current needed to obtain 1 gauss was 0.7 A. The magnetic field was parallel to the coil axis and was uniform near the axis and the center of the coil system. Cells were maintained at all times in a low AC (8 milligauss) environment except during a single centrifugation step. This was achieved by using a 2-pole motor tissue incubator (CEDCO model IRE 93) with low AC fields for routine cell culture and by defining the lowest field regions within the incubator. Exponentially growing cells (5 × 106 cells/ml) in serum-free medium in 1.5-ml capacity microcentrifuge tubes were exposed to the 1-gauss, 60-Hz EMF by placing the tubes at the center of the four-coil field generator contained in the incubator with shielding sheets of metal alloy at the bottom of the chambers. Control tubes were simultaneously placed inside a duplicate incubator without the exposure apparatus. To measure the fields in the incubators, the laminar flow hood, centrifuge, and nearby areas, a gaussmeter (MAG model 25, Magnetic Sciences International) was used. EMF strength was constantly monitored with the gaussmeter and adjusted manually if needed. In all experiments, the coils were activated before the cells had been placed in, to avoid fluctuations of the EMF during turning on the apparatus. The coils were turned off only after the cells were taken out of the exposure system. To evaluate the effects of EMF on the enzymatic activity of BTK, exponentially growing cells were exposed to EMF and, at the indicated time points after EMF exposure, the test tubes were immediately immersed in ice water for 30 s to 1 min. Cells were spun down at 3,000 × gfor 5 min at 0 °C and lysed in a 1% Nonidet P-40 lysis buffer (50 mm Tris-HCl, pH 7.5, 150 mm NaCl, 1% Nonidet P-40, 1 mm EDTA) containing 1 mmNa3VO4 and 1 mm sodium molybdate as phosphatase inhibitors, 10 μg/ml leupeptin, 10 μg/ml aprotinin, and 1 mm phenylmethylsulfonyl fluoride as protease inhibitors. Lysates were spun twice at 12,000 × g for 10 min at 4 °C prior to immunoprecipitation. 500-μg samples of the cell lysates were immunoprecipitated with a polyclonal rabbit anti-BTK antibody (3 μl/500 μg of lysate) and immune complex kinase assays (26Uckun F.M. Burkhardt A.L. Jarvis L. Jun X. Stealey B. Dibirdik I. Myers D.E. Tuel-Ahlgren L. Bolen J.B. J. Biol. Chem. 1993; 268: 21172-21184Abstract Full Text PDF PubMed Google Scholar, 27Uckun F.M. Tuel-Ahlgren L. Song C.W. Waddick K. Myers D.E. Kirihara J. Ledbetter J.A. Schieven G.L. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 9005-9009Crossref PubMed Scopus (187) Google Scholar, 28Uckun F.M. Dibirdik I. Smith R. Tuel-Ahlgren L. Chandan-Langlie M. Schieven G.L. Waddick K.G. Hanson M. Ledbetter J.A. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 3589-3593Crossref PubMed Scopus (70) Google Scholar, 29Dibirdik I. Chandan-Langlie M. Ledbetter J.A. Tuel-Ahlgren L. Obuz V. Waddick K.G. Gajl-Peczalska K. Schieven G.L. Uckun F.M. Blood. 1991; 78: 564-570Crossref PubMed Google Scholar), as well as anti-BTK Western blot analyses, were performed as described (14Mahajan S. Fargnoli J. Burkhardt A.L. Kut S.A. Saouaf S.J. Bolen J.B. Mol. Cell. Biol. 1995; 15: 5304-5311Crossref PubMed Scopus (135) Google Scholar, 19Uckun F.M. Waddick K.G. Mahajan S. Jun X. Takata M. Bolen J. Kurosaki T. Science. 1996; 273: 1096-1100Crossref PubMed Scopus (167) Google Scholar). All BTK kinase and Western blot autoradiograms were subjected to densitometric scanning using an automated AMBIS system (Automated Microbiology System, Inc., San Diego, CA), and for each time point a stimulation index was determined by comparing the density ratios of the kinase and protein bands to those of the base-line sample and using the formula: stimulation index (SI) = (density of kinase band/density of BTK protein band)test sample:(density of kinase band/density of BTK protein band)base-line control sample. The expression levels of PLC-γ2 and actin in whole cell lysates of wild-type and mutant DT40 B-cells were examined by Western blot analysis using an enhanced chemiluminescence (ECL) detection system (Amersham Pharmacia Biotech) as reported previously (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar). Ice-cold perchloric acid (20%) was added after EMF exposure to the cell suspensions to stop further reaction. The test tubes were kept on ice for 20 min and then sedimented at 2,000 ×g for 15 min at 4 °C. The supernatant was collected and the pH was neutralized to 7.5 with ice-cold 10 mm KOH and centrifuged again. The supernatant was then collected and stored at −20 °C for subsequent measurement of Ins-1,4,5-P3levels.d-myo-[3H]inositol-1,4,5-trisphosphate assay system purchased from Amersham Pharmacia Biotech was used to measure Ins-1,4,5-P3 levels as reported (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 26Uckun F.M. Burkhardt A.L. Jarvis L. Jun X. Stealey B. Dibirdik I. Myers D.E. Tuel-Ahlgren L. Bolen J.B. J. Biol. Chem. 1993; 268: 21172-21184Abstract Full Text PDF PubMed Google Scholar, 28Uckun F.M. Dibirdik I. Smith R. Tuel-Ahlgren L. Chandan-Langlie M. Schieven G.L. Waddick K.G. Hanson M. Ledbetter J.A. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 3589-3593Crossref PubMed Scopus (70) Google Scholar, 29Dibirdik I. Chandan-Langlie M. Ledbetter J.A. Tuel-Ahlgren L. Obuz V. Waddick K.G. Gajl-Peczalska K. Schieven G.L. Uckun F.M. Blood. 1991; 78: 564-570Crossref PubMed Google Scholar). This highly sensitive assay is based on the competition between unlabeled Ins-1,4,5-P3 in the cellular extracts and a fixed quantity of a high specific activity [3H]Ins-1,4,5-P3 tracer for a limited number of binding sites on a bovine adrenal binding protein specific and sensitive to Ins-1,4,5-P3 (26Uckun F.M. Burkhardt A.L. Jarvis L. Jun X. Stealey B. Dibirdik I. Myers D.E. Tuel-Ahlgren L. Bolen J.B. J. Biol. Chem. 1993; 268: 21172-21184Abstract Full Text PDF PubMed Google Scholar, 28Uckun F.M. Dibirdik I. Smith R. Tuel-Ahlgren L. Chandan-Langlie M. Schieven G.L. Waddick K.G. Hanson M. Ledbetter J.A. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 3589-3593Crossref PubMed Scopus (70) Google Scholar, 29Dibirdik I. Chandan-Langlie M. Ledbetter J.A. Tuel-Ahlgren L. Obuz V. Waddick K.G. Gajl-Peczalska K. Schieven G.L. Uckun F.M. Blood. 1991; 78: 564-570Crossref PubMed Google Scholar). LYN kinase plays a pivotal role in ligand-induced signal transduction events in B-lineage lymphoid cells and is thought to mediate its downstream effects (e.g.activation of PLC-γ2 and inositol phospholipid turnover) by activating the tyrosine kinases SYK and BTK (13Bolen J.B. Curr. Opin. Immunol. 1995; 7: 306-311Crossref PubMed Scopus (104) Google Scholar, 14Mahajan S. Fargnoli J. Burkhardt A.L. Kut S.A. Saouaf S.J. Bolen J.B. Mol. Cell. Biol. 1995; 15: 5304-5311Crossref PubMed Scopus (135) Google Scholar, 15Rawlings D.J. Scharenberg A.M. Park H. Wahl M.I. Lin S. Kato R.M. Fuckiger A.-C. Witte O.N. Kinet J.-P. Science. 1996; 271: 822-825Crossref PubMed Scopus (381) Google Scholar, 20Takata M. Kurosaki T. J. Exp. Med. 1996; 184: 31-40Crossref PubMed Scopus (426) Google Scholar, 22Takata M. Sabe H. Hata A. Inazu T. Homma Y. Nukada T. Yamamura H. Kurosaki T. EMBO J. 1994; 13: 1341-1349Crossref PubMed Scopus (589) Google Scholar, 24Kurosaki T. Takata M. Yamanashi Y. Inazu T. Taniguchi T. Yamamoto T. Yamamura H. J. Exp. Med. 1994; 179: 1725-1729Crossref PubMed Scopus (254) Google Scholar). We previously reported that exposure of B-lineage lymphoid cells to low energy EMF stimulates the protein tyrosine kinase LYN, and activation of LYN kinase was sufficient and mandatory for EMF-induced tyrosine phosphorylation in B-lineage lymphoid cells (10Uckun F.M. Kurosaki T. Jin J. Jun X. Morgan A. Takata M. Bolen J. Luben R. J. Biol. Chem. 1995; 270: 27666-27670Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar). To further elucidate the EMF-induced signal transduction events in B-lineage lymphoid cells, we decided to examine the enzymatic activity of BTK in DT40 lymphoma B-cells after EMF exposure using immune complex kinase assays. We first exposed DT40 lymphoma B-cells to low energy EMF at a constant frequency (60 Hz), but increasing intensities (1–10 gauss), and examined the enzymatic activity of BTK at various time points after the initiate of the EMF exposure. As shown in Fig. 1, 60-Hz EMF exposure at a field intensity of 1 gauss or 3 gauss induced rapid activation of BTK (p77BTK) kinase activity, as reflected by increased autophosphorylation. This rapid activation of BTK was observed in four consecutive independent experiments. The magnitude of activation was less at higher field intensities. Therefore, a field intensity of 1 gauss was used in subsequent experiments. Different domains of BTK are important for its physiologic functions (13Bolen J.B. Curr. Opin. Immunol. 1995; 7: 306-311Crossref PubMed Scopus (104) Google Scholar, 30Saouaf S.J. Mahajan S. Rowley R.B. Kut S.A. Fargnoli J. Burkhardt A.L. Tsukada S. Witte O.N. Bolen J.B. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 9524-9528Crossref PubMed Scopus (229) Google Scholar). BTK has a pleckstrin homology (PH) domain, a TEC homology domain, a single SH3 domain, a single SH2 domain, and a catalytic kinase domain (12Rawlings D.J. Witte O.N. Immunol. Rev. 1994; 138: 105-119Crossref PubMed Scopus (102) Google Scholar, 13Bolen J.B. Curr. Opin. Immunol. 1995; 7: 306-311Crossref PubMed Scopus (104) Google Scholar, 17Rawlings D.J. Saffran D.C. Tsukada S. Largaespada D.A. Grimaldi J.C. Cohen L. Mohr R.N. Bazan J.F. Howard M. Copeland N.G. Jenkins N.A. Witte O.N. Science. 1993; 261: 358-361Crossref PubMed Scopus (781) Google Scholar, 30Saouaf S.J. Mahajan S. Rowley R.B. Kut S.A. Fargnoli J. Burkhardt A.L. Tsukada S. Witte O.N. Bolen J.B. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 9524-9528Crossref PubMed Scopus (229) Google Scholar). Mutations in the SH2 domain as well as PH domain of the BTK result in defective B-cell development, leading to human X-linked agammaglobulinemia (16Smith C.I. Islam K.B. Vorechovsky I. Olerup O. Wallin E. Rabbani H. Baskin B. Hammarstrom L. Immunol. Rev. 1994; 138: 159-183Crossref PubMed Scopus (113) Google Scholar, 31Vetrie D. Vorechovsky I. Sideras P. Holland J. Davies A. Flinter F. Hammarstrom L. Kinnon C. Levinsky R. Bobrow M. Smith C.I.E. Bentley D.R. Nature. 1993; 361: 226-233Crossref PubMed Scopus (1263) Google Scholar, 32Tsukada S. Saffran D.C. Rawlings D.J. Parolini O. Allen R.C. Klisak I. Sparkes R.S. Kubagawa H. Mohandas T. Quan S. Belmont J.W. Cooper M.D. Conley M.E. Witte O.N. Cell. 1993; 72: 279-290Abstract Full Text PDF PubMed Scopus (1167) Google Scholar, 33Vihinen M. Cooper M.D Basile G.S. Fischer A. Good R.A. Hendriks R.W. Kinnon C. Kwan S.-P. Litman G.W. Notarangelo L.D. Ochs H.D. Rosen F.S. Vetrie D. Webster A.D.B. Zegers B.J.M. Smith C.I.E. Immunol. Today. 1995; 16: 460-465Abstract Full Text PDF PubMed Scopus (66) Google Scholar, 34Bradley L.A. Sweatman A.K. Lovering R.C. Jones A.M. Morgan G. Levinsky R.J. Kinnon C. Hum. Mol. Genet. 1994; 3: 79-83Crossref PubMed Scopus (92) Google Scholar). The PH domain is responsible for interactions with various isoforms of protein kinase C,βγ subunits of heterotrimeric GTP-binding proteins and phosphatidylinositol-4,5-bisphosphate, the precursor to Ins-1,4,5-P3 (35Tsukada S. Rawlings D.J. Witte O.N. Curr. Opin. Immunol. 1994; 6: 623-630Crossref PubMed Scopus (99) Google Scholar, 36Harlan J.E. Hajduk P.J. Yoon H.S. Fesik S.W. Nature. 1994; 371: 168-170Crossref PubMed Scopus (678) Google Scholar, 37Hemmings B.A. Science. 1997; 275: 1899Crossref PubMed Scopus (67) Google Scholar, 38Pawson T. Nature. 1995; 373: 573-580Crossref PubMed Scopus (2234) Google Scholar). The SH3 domain is responsible for interactions with proline-rich sequences such as TEC domains, whereas the SH2 domain facilitates the interactions with tyrosine-phosphorylated proteins (13Bolen J.B. Curr. Opin. Immunol. 1995; 7: 306-311Crossref PubMed Scopus (104) Google Scholar, 38Pawson T. Nature. 1995; 373: 573-580Crossref PubMed Scopus (2234) Google Scholar). It has been shown that the SH2 and PH domains of BTK are required for the activation of PLC-γ2 in B-cell antigen receptor-mediated B-cell activation (20Takata M. Kurosaki T. J. Exp. Med. 1996; 184: 31-40Crossref PubMed Scopus (426) Google Scholar), but the same domains are not essential for the activation of BTK induced by ionizing radiation (19Uckun F.M. Waddick K.G. Mahajan S. Jun X. Takata M. Bolen J. Kurosaki T. Science. 1996; 273: 1096-1100Crossref PubMed Scopus (167) Google Scholar). Therefore, we decided to determine if the SH2 and PH domains of BTK are required for its activation following EMF exposure. Exposure of control wild-type DT40 cells to EMF resulted in a time-dependent activation of BTK, as measured by enhanced autophosphorylation. While the autophosphorylation showed a 7.9-fold increase at 30 min by densitometric scanning of the autoradiogram, the abundance of the enzyme, as determined by anti-BTK Western blot analysis, showed only a 6% increase during the course of the experiment, suggesting altered specific activity. The BTK-protein adjusted stimulation indices (SI) were 1.9 at 2.5 min, 4.6 at 5 min, 6.4 at 15 min, and 7.4 at 30 min. As shown in Fig. 2, A andB, the magnitude and time course of BTK activation in BTK-deficient DT40 cells reconstituted with the wild-type humanbtk gene were very similar to those of wild-type DT40 cells (BTK-protein adjusted SI at 30 min = 9.6). By comparison, introduction of a SH2 domain-mutant or a PH domain-mutant humanbtk gene resulted in substantially attenuated EMF responses, as evidenced by the 3–4-fold lower maximum SI than in wild-type DT40 cells, suggesting important roles for the SH2 and PH domains in BTK activation after EMF exposure (Fig. 2, C andD). As expected, no BTK bands were detected in immune complex kinase assays or anti-BTK Western blots of DT40 cells, which were rendered BTK-deficient through targeted disruption of the btk gene by homologous recombination knockout, and were used as a negative control (Fig. 3 A). Targeted disruption of the lyn gene abolished the activation of BTK after EMF exposure, indicating that LYN kinase acts upstream of BTK in the EMF-induced signaling cascade (Fig. 3 B). By comparison, targeted disruption of the syk gene did not abolish the BTK activation. However, the magnitude of the BTK signal seemed markedly attenuated in SYK-deficient DT40 cells (maximum SI: 2.9 at 15 min), consistent with the existence of cross-talk between BTK and SYK in generating an optimal EMF response (Fig. 3 C). In accordance with our previous study (11Dibirdik I. Kristupaitis D. Kurosaki T. Tuel-Ahlgren L. Chu A. Pond D. Tuong D. Luben R. Uckun F.M. J. Biol. Chem. 1998; 273: 4035-4039Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar), exposure of DT40 cells to EMF resulted in enhanced inositol phospholipid turnover (Fig.4 A). Because BTK is required for the B-cell antigen receptor-induced PLC-γ2 activation in DT40 cells (20Takata M. Kurosaki T. J. Exp. Med. 1996; 184: 31-40Crossref PubMed Scopus (426) Google Scholar), we then examined the role of BTK in EMF-induced inositol phospholipid turnover. Targeted disruption of the btk gene abolished the EMF-induced Ins-1,4,5-P3 signal (Fig.4 B). Introduction of wild-type (but not a kinase domain mutant) human btk gene into the BTK-deficient DT40 cells restored their ability to respond to EMF with enhanced inositol phospholipid turnover (Fig. 4, C and D). The lack of the Ins-1,4,5-P3 signal in BTK− and BTK−,rBTK(K−) cells was not due to lower expression levels of PLC-γ2 enzyme in these cells (Fig.4 E). These results demonstrate that BTK is essential for EMF-induced PLC-γ2 activation in DT40 lymphoma B-cells, and its kinase domain is required for the Ins-1,4,5-P3 response. In summary, we examined the molecular mechanism of enhanced tyrosine phosphorylation and increased inositol phospholipid turnover in DT40 lymphoma B-cells exposed to low energy EMF. Our findings provide unprecedented evidence that EMF exposure initiates a biochemical signaling cascade intimately linked to BTK. Like the LYN kinase, which functions upstream, BTK plays an important role in initiation and maintenance of signaling events that control the proliferation and survival of B-lineage lymphoid cells. Recent studies demonstrated that BTK regulates apoptotic signals (19Uckun F.M. Waddick K.G. Mahajan S. Jun X. Takata M. Bolen J. Kurosaki T. Science. 1996; 273: 1096-1100Crossref PubMed Scopus (167) Google Scholar, 39Kawakami Y. Miura T. Bissonnette R. Hata D. Khan W.N. Kitamura T. Maeda-Yamamoto M. Hartman S.E. Yao L. Alt F.W. Kawakami T. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 3938-3942Crossref PubMed Scopus (128) Google Scholar, 40Anderson Y.S. Teutsch M. Dong Z. Wortis H.H. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 10966-10971Crossref PubMed Scopus (116) Google Scholar). Therefore, this study further supports the hypothesis that a delicate growth regulatory balance in B-lineage lymphoid cells might be altered by EMF exposure. The mechanism by which exposure of lymphoma B-cells to low energy EMF triggers activation of LYN and BTK remains to be deciphered." @default.
- W2099846952 created "2016-06-24" @default.
- W2099846952 creator A5012028811 @default.
- W2099846952 creator A5018052958 @default.
- W2099846952 creator A5027527463 @default.
- W2099846952 creator A5028391222 @default.
- W2099846952 creator A5038801007 @default.
- W2099846952 creator A5042371608 @default.
- W2099846952 creator A5044600573 @default.
- W2099846952 creator A5064437783 @default.
- W2099846952 creator A5088128952 @default.
- W2099846952 creator A5090641068 @default.
- W2099846952 creator A5091381226 @default.
- W2099846952 date "1998-05-01" @default.
- W2099846952 modified "2023-10-18" @default.
- W2099846952 title "Electromagnetic Field-induced Stimulation of Bruton's Tyrosine Kinase" @default.
- W2099846952 cites W136542906 @default.
- W2099846952 cites W1480844331 @default.
- W2099846952 cites W1911577712 @default.
- W2099846952 cites W1970956917 @default.
- W2099846952 cites W1981373274 @default.
- W2099846952 cites W1982186905 @default.
- W2099846952 cites W1992188310 @default.
- W2099846952 cites W1994610242 @default.
- W2099846952 cites W1997907275 @default.
- W2099846952 cites W2000911314 @default.
- W2099846952 cites W2005398131 @default.
- W2099846952 cites W2007750331 @default.
- W2099846952 cites W2017302593 @default.
- W2099846952 cites W2017508812 @default.
- W2099846952 cites W2024837430 @default.
- W2099846952 cites W2025755006 @default.
- W2099846952 cites W2034949322 @default.
- W2099846952 cites W2035277099 @default.
- W2099846952 cites W2046183216 @default.
- W2099846952 cites W2050965695 @default.
- W2099846952 cites W2054526083 @default.
- W2099846952 cites W2055591498 @default.
- W2099846952 cites W2078991312 @default.
- W2099846952 cites W2100034730 @default.
- W2099846952 cites W2105733675 @default.
- W2099846952 cites W2111449472 @default.
- W2099846952 cites W2113221012 @default.
- W2099846952 cites W2113764179 @default.
- W2099846952 cites W2146624215 @default.
- W2099846952 cites W2156247564 @default.
- W2099846952 cites W2157297134 @default.
- W2099846952 cites W2160595263 @default.
- W2099846952 cites W2171220871 @default.
- W2099846952 cites W2332851702 @default.
- W2099846952 cites W2339045238 @default.
- W2099846952 cites W34890885 @default.
- W2099846952 doi "https://doi.org/10.1074/jbc.273.20.12397" @default.
- W2099846952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9575194" @default.
- W2099846952 hasPublicationYear "1998" @default.
- W2099846952 type Work @default.
- W2099846952 sameAs 2099846952 @default.
- W2099846952 citedByCount "33" @default.
- W2099846952 countsByYear W20998469522012 @default.
- W2099846952 countsByYear W20998469522018 @default.
- W2099846952 countsByYear W20998469522022 @default.
- W2099846952 crossrefType "journal-article" @default.
- W2099846952 hasAuthorship W2099846952A5012028811 @default.
- W2099846952 hasAuthorship W2099846952A5018052958 @default.
- W2099846952 hasAuthorship W2099846952A5027527463 @default.
- W2099846952 hasAuthorship W2099846952A5028391222 @default.
- W2099846952 hasAuthorship W2099846952A5038801007 @default.
- W2099846952 hasAuthorship W2099846952A5042371608 @default.
- W2099846952 hasAuthorship W2099846952A5044600573 @default.
- W2099846952 hasAuthorship W2099846952A5064437783 @default.
- W2099846952 hasAuthorship W2099846952A5088128952 @default.
- W2099846952 hasAuthorship W2099846952A5090641068 @default.
- W2099846952 hasAuthorship W2099846952A5091381226 @default.
- W2099846952 hasBestOaLocation W20998469521 @default.
- W2099846952 hasConcept C121332964 @default.
- W2099846952 hasConcept C126322002 @default.
- W2099846952 hasConcept C185592680 @default.
- W2099846952 hasConcept C24998067 @default.
- W2099846952 hasConcept C2776165026 @default.
- W2099846952 hasConcept C28843909 @default.
- W2099846952 hasConcept C42362537 @default.
- W2099846952 hasConcept C55493867 @default.
- W2099846952 hasConcept C62478195 @default.
- W2099846952 hasConcept C62520636 @default.
- W2099846952 hasConcept C71924100 @default.
- W2099846952 hasConcept C90059517 @default.
- W2099846952 hasConceptScore W2099846952C121332964 @default.
- W2099846952 hasConceptScore W2099846952C126322002 @default.
- W2099846952 hasConceptScore W2099846952C185592680 @default.
- W2099846952 hasConceptScore W2099846952C24998067 @default.
- W2099846952 hasConceptScore W2099846952C2776165026 @default.
- W2099846952 hasConceptScore W2099846952C28843909 @default.
- W2099846952 hasConceptScore W2099846952C42362537 @default.
- W2099846952 hasConceptScore W2099846952C55493867 @default.
- W2099846952 hasConceptScore W2099846952C62478195 @default.
- W2099846952 hasConceptScore W2099846952C62520636 @default.
- W2099846952 hasConceptScore W2099846952C71924100 @default.
- W2099846952 hasConceptScore W2099846952C90059517 @default.