Matches in SemOpenAlex for { <https://semopenalex.org/work/W2099949969> ?p ?o ?g. }
- W2099949969 abstract "Among the numerous methods used to analyze neuroimaging data, Linear Discriminant Analysis (LDA) is commonly applied for binary classification problems. LDAs popularity derives from its simplicity and its competitive classification performance, which has been reported for various types of neuroimaging data. Yet the standard LDA approach proves less than optimal for binary classification problems when additional label information (i.e. subclass labels) is present. Subclass labels allow to model structure in the data, which can be used to facilitate the classification task. In this paper, we illustrate how neuroimaging data exhibit subclass labels that may contain valuable information. We also show that the standard LDA classifier is unable to exploit subclass labels. We introduce a novel method that allows subclass labels to be incorporated efficiently into the classifier. The novel method, which we call Relevance Subclass LDA (RSLDA), computes an individual classification hyperplane for each subclass. It is based on regularized estimators of the subclass mean and uses other subclasses as regularization targets. We demonstrate the applicability and performance of our method on data drawn from two different neuroimaging modalities: (I) EEG data from brain-computer interfacing with event-related potentials, and (II) fMRI data in response to different levels of visual motion. We show that RSLDA outperforms the standard LDA approach for both types of datasets. These findings illustrate the benefits of exploiting subclass structure in neuroimaging data. Finally, we show that our classifier also outputs regularization profiles, enabling researchers to interpret the subclass structure in a meaningful way. RSLDA therefore yields increased classification accuracy as well as a better interpretation of neuroimaging data. Since both results are highly favorable, we suggest to apply RSLDA for various classification problems within neuroimaging and beyond." @default.
- W2099949969 created "2016-06-24" @default.
- W2099949969 creator A5038264046 @default.
- W2099949969 creator A5060955050 @default.
- W2099949969 creator A5072994165 @default.
- W2099949969 creator A5074247902 @default.
- W2099949969 creator A5084731010 @default.
- W2099949969 date "2016-01-01" @default.
- W2099949969 modified "2023-10-17" @default.
- W2099949969 title "Analyzing neuroimaging data with subclasses: A shrinkage approach" @default.
- W2099949969 cites W1584444527 @default.
- W2099949969 cites W1598266570 @default.
- W2099949969 cites W1614659291 @default.
- W2099949969 cites W1965333043 @default.
- W2099949969 cites W1965463467 @default.
- W2099949969 cites W1978754687 @default.
- W2099949969 cites W1980381399 @default.
- W2099949969 cites W1991769471 @default.
- W2099949969 cites W1994900366 @default.
- W2099949969 cites W1997319821 @default.
- W2099949969 cites W2011402106 @default.
- W2099949969 cites W2013717450 @default.
- W2099949969 cites W2016549004 @default.
- W2099949969 cites W2018034156 @default.
- W2099949969 cites W2034927741 @default.
- W2099949969 cites W2046143942 @default.
- W2099949969 cites W2046557060 @default.
- W2099949969 cites W2048631316 @default.
- W2099949969 cites W2062125287 @default.
- W2099949969 cites W2067652278 @default.
- W2099949969 cites W2068562173 @default.
- W2099949969 cites W2072735345 @default.
- W2099949969 cites W2075647286 @default.
- W2099949969 cites W2098844365 @default.
- W2099949969 cites W2118047803 @default.
- W2099949969 cites W2119732796 @default.
- W2099949969 cites W2125992711 @default.
- W2099949969 cites W2139906140 @default.
- W2099949969 cites W2140174536 @default.
- W2099949969 cites W2141250485 @default.
- W2099949969 cites W2143660835 @default.
- W2099949969 cites W2145901830 @default.
- W2099949969 cites W2152171700 @default.
- W2099949969 cites W2158485497 @default.
- W2099949969 cites W2164552042 @default.
- W2099949969 cites W2170821486 @default.
- W2099949969 cites W2799061466 @default.
- W2099949969 cites W614292567 @default.
- W2099949969 doi "https://doi.org/10.1016/j.neuroimage.2015.09.031" @default.
- W2099949969 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26407815" @default.
- W2099949969 hasPublicationYear "2016" @default.
- W2099949969 type Work @default.
- W2099949969 sameAs 2099949969 @default.
- W2099949969 citedByCount "9" @default.
- W2099949969 countsByYear W20999499692016 @default.
- W2099949969 countsByYear W20999499692017 @default.
- W2099949969 countsByYear W20999499692018 @default.
- W2099949969 countsByYear W20999499692019 @default.
- W2099949969 countsByYear W20999499692020 @default.
- W2099949969 countsByYear W20999499692022 @default.
- W2099949969 crossrefType "journal-article" @default.
- W2099949969 hasAuthorship W2099949969A5038264046 @default.
- W2099949969 hasAuthorship W2099949969A5060955050 @default.
- W2099949969 hasAuthorship W2099949969A5072994165 @default.
- W2099949969 hasAuthorship W2099949969A5074247902 @default.
- W2099949969 hasAuthorship W2099949969A5084731010 @default.
- W2099949969 hasConcept C118552586 @default.
- W2099949969 hasConcept C119857082 @default.
- W2099949969 hasConcept C12267149 @default.
- W2099949969 hasConcept C153180895 @default.
- W2099949969 hasConcept C154945302 @default.
- W2099949969 hasConcept C15744967 @default.
- W2099949969 hasConcept C159654299 @default.
- W2099949969 hasConcept C160920958 @default.
- W2099949969 hasConcept C203014093 @default.
- W2099949969 hasConcept C2776135515 @default.
- W2099949969 hasConcept C2776194381 @default.
- W2099949969 hasConcept C41008148 @default.
- W2099949969 hasConcept C58693492 @default.
- W2099949969 hasConcept C66905080 @default.
- W2099949969 hasConcept C69738355 @default.
- W2099949969 hasConcept C86803240 @default.
- W2099949969 hasConcept C95623464 @default.
- W2099949969 hasConceptScore W2099949969C118552586 @default.
- W2099949969 hasConceptScore W2099949969C119857082 @default.
- W2099949969 hasConceptScore W2099949969C12267149 @default.
- W2099949969 hasConceptScore W2099949969C153180895 @default.
- W2099949969 hasConceptScore W2099949969C154945302 @default.
- W2099949969 hasConceptScore W2099949969C15744967 @default.
- W2099949969 hasConceptScore W2099949969C159654299 @default.
- W2099949969 hasConceptScore W2099949969C160920958 @default.
- W2099949969 hasConceptScore W2099949969C203014093 @default.
- W2099949969 hasConceptScore W2099949969C2776135515 @default.
- W2099949969 hasConceptScore W2099949969C2776194381 @default.
- W2099949969 hasConceptScore W2099949969C41008148 @default.
- W2099949969 hasConceptScore W2099949969C58693492 @default.
- W2099949969 hasConceptScore W2099949969C66905080 @default.
- W2099949969 hasConceptScore W2099949969C69738355 @default.
- W2099949969 hasConceptScore W2099949969C86803240 @default.
- W2099949969 hasConceptScore W2099949969C95623464 @default.