Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100021105> ?p ?o ?g. }
- W2100021105 endingPage "1212" @default.
- W2100021105 startingPage "1192" @default.
- W2100021105 abstract "Understanding the data generating process behind healthcare costs remains a key empirical issue. Although much research to date has focused on the prediction of the conditional mean cost, this can potentially miss important features of the full distribution such as tail probabilities. We conduct a quasi-Monte Carlo experiment using the English National Health Service inpatient data to compare 14 approaches in modelling the distribution of healthcare costs: nine of which are parametric and have commonly been used to fit healthcare costs, and five others are designed specifically to construct a counterfactual distribution. Our results indicate that no one method is clearly dominant and that there is a trade-off between bias and precision of tail probability forecasts. We find that distributional methods demonstrate significant potential, particularly with larger sample sizes where the variability of predictions is reduced. Parametric distributions such as log-normal, generalised gamma and generalised beta of the second kind are found to estimate tail probabilities with high precision but with varying bias depending upon the cost threshold being considered." @default.
- W2100021105 created "2016-06-24" @default.
- W2100021105 creator A5002140263 @default.
- W2100021105 creator A5002268196 @default.
- W2100021105 creator A5085716385 @default.
- W2100021105 date "2015-04-30" @default.
- W2100021105 modified "2023-10-03" @default.
- W2100021105 title "Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution" @default.
- W2100021105 cites W1479855771 @default.
- W2100021105 cites W1492458785 @default.
- W2100021105 cites W1493091238 @default.
- W2100021105 cites W1497629527 @default.
- W2100021105 cites W1557268456 @default.
- W2100021105 cites W1982564323 @default.
- W2100021105 cites W1991611483 @default.
- W2100021105 cites W1995471558 @default.
- W2100021105 cites W2001142960 @default.
- W2100021105 cites W2025828045 @default.
- W2100021105 cites W2028605949 @default.
- W2100021105 cites W2037668439 @default.
- W2100021105 cites W2053348407 @default.
- W2100021105 cites W2053966798 @default.
- W2100021105 cites W2062427523 @default.
- W2100021105 cites W2063997550 @default.
- W2100021105 cites W2069597205 @default.
- W2100021105 cites W2071875955 @default.
- W2100021105 cites W2074339522 @default.
- W2100021105 cites W2077158601 @default.
- W2100021105 cites W2095516703 @default.
- W2100021105 cites W2105468866 @default.
- W2100021105 cites W2110262716 @default.
- W2100021105 cites W2112231177 @default.
- W2100021105 cites W2119508504 @default.
- W2100021105 cites W2132038797 @default.
- W2100021105 cites W2146880712 @default.
- W2100021105 cites W2151152699 @default.
- W2100021105 cites W2163271914 @default.
- W2100021105 cites W2219853722 @default.
- W2100021105 cites W2223534015 @default.
- W2100021105 cites W2951225967 @default.
- W2100021105 cites W3025691921 @default.
- W2100021105 cites W3122297245 @default.
- W2100021105 cites W3123140680 @default.
- W2100021105 cites W3124564277 @default.
- W2100021105 cites W3125848237 @default.
- W2100021105 cites W3147894994 @default.
- W2100021105 cites W4211053332 @default.
- W2100021105 cites W4230729948 @default.
- W2100021105 doi "https://doi.org/10.1002/hec.3178" @default.
- W2100021105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25929525" @default.
- W2100021105 hasPublicationYear "2015" @default.
- W2100021105 type Work @default.
- W2100021105 sameAs 2100021105 @default.
- W2100021105 citedByCount "50" @default.
- W2100021105 countsByYear W21000211052015 @default.
- W2100021105 countsByYear W21000211052016 @default.
- W2100021105 countsByYear W21000211052017 @default.
- W2100021105 countsByYear W21000211052018 @default.
- W2100021105 countsByYear W21000211052019 @default.
- W2100021105 countsByYear W21000211052020 @default.
- W2100021105 countsByYear W21000211052021 @default.
- W2100021105 countsByYear W21000211052022 @default.
- W2100021105 countsByYear W21000211052023 @default.
- W2100021105 crossrefType "journal-article" @default.
- W2100021105 hasAuthorship W2100021105A5002140263 @default.
- W2100021105 hasAuthorship W2100021105A5002268196 @default.
- W2100021105 hasAuthorship W2100021105A5085716385 @default.
- W2100021105 hasBestOaLocation W21000211051 @default.
- W2100021105 hasConcept C105795698 @default.
- W2100021105 hasConcept C108650721 @default.
- W2100021105 hasConcept C110121322 @default.
- W2100021105 hasConcept C117251300 @default.
- W2100021105 hasConcept C134306372 @default.
- W2100021105 hasConcept C149782125 @default.
- W2100021105 hasConcept C15744967 @default.
- W2100021105 hasConcept C160735492 @default.
- W2100021105 hasConcept C162324750 @default.
- W2100021105 hasConcept C19499675 @default.
- W2100021105 hasConcept C33923547 @default.
- W2100021105 hasConcept C41008148 @default.
- W2100021105 hasConcept C50522688 @default.
- W2100021105 hasConcept C77805123 @default.
- W2100021105 hasConceptScore W2100021105C105795698 @default.
- W2100021105 hasConceptScore W2100021105C108650721 @default.
- W2100021105 hasConceptScore W2100021105C110121322 @default.
- W2100021105 hasConceptScore W2100021105C117251300 @default.
- W2100021105 hasConceptScore W2100021105C134306372 @default.
- W2100021105 hasConceptScore W2100021105C149782125 @default.
- W2100021105 hasConceptScore W2100021105C15744967 @default.
- W2100021105 hasConceptScore W2100021105C160735492 @default.
- W2100021105 hasConceptScore W2100021105C162324750 @default.
- W2100021105 hasConceptScore W2100021105C19499675 @default.
- W2100021105 hasConceptScore W2100021105C33923547 @default.
- W2100021105 hasConceptScore W2100021105C41008148 @default.
- W2100021105 hasConceptScore W2100021105C50522688 @default.
- W2100021105 hasConceptScore W2100021105C77805123 @default.
- W2100021105 hasFunder F4320334630 @default.
- W2100021105 hasIssue "9" @default.