Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100024891> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2100024891 endingPage "512" @default.
- W2100024891 startingPage "393" @default.
- W2100024891 abstract "We study homological mirror symmetry conjecture of symplectic and complex torus. We will associate a mirror torus<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper T Superscript 2 n Baseline comma omega plus StartRoot negative 1 EndRoot upper B right-parenthesis Superscript logical-and><mml:semantics><mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>,</mml:mo><mml:mi>ω<!-- ω --></mml:mi><mml:mo>+</mml:mo><mml:msqrt><mml:mo>−<!-- − --></mml:mo><mml:mn>1</mml:mn></mml:msqrt><mml:mi>B</mml:mi><mml:msup><mml:mo stretchy=false>)</mml:mo><mml:mrow class=MJX-TeXAtom-ORD><mml:mo>∧<!-- ∧ --></mml:mo></mml:mrow></mml:msup></mml:mrow><mml:annotation encoding=application/x-tex>(T^{2n},omega +sqrt {-1}B)^{wedge }</mml:annotation></mml:semantics></mml:math></inline-formula>to each symplectic torus<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper T Superscript 2 n Baseline comma omega right-parenthesis><mml:semantics><mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>,</mml:mo><mml:mi>ω<!-- ω --></mml:mi><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>(T^{2n},omega )</mml:annotation></mml:semantics></mml:math></inline-formula>together with a closed 2 form<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper B><mml:semantics><mml:mi>B</mml:mi><mml:annotation encoding=application/x-tex>B</mml:annotation></mml:semantics></mml:math></inline-formula>which we call a<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper B><mml:semantics><mml:mi>B</mml:mi><mml:annotation encoding=application/x-tex>B</mml:annotation></mml:semantics></mml:math></inline-formula>-field. We will associate a coherent sheaf<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper E left-parenthesis upper L comma script upper L right-parenthesis><mml:semantics><mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi class=MJX-tex-caligraphic mathvariant=script>E</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:mi>L</mml:mi><mml:mo>,</mml:mo><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi class=MJX-tex-caligraphic mathvariant=script>L</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>{mathcal E}(L,{mathcal L})</mml:annotation></mml:semantics></mml:math></inline-formula>on<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper T Superscript 2 n Baseline comma omega plus StartRoot negative 1 EndRoot upper B right-parenthesis Superscript logical-and><mml:semantics><mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>,</mml:mo><mml:mi>ω<!-- ω --></mml:mi><mml:mo>+</mml:mo><mml:msqrt><mml:mo>−<!-- − --></mml:mo><mml:mn>1</mml:mn></mml:msqrt><mml:mi>B</mml:mi><mml:msup><mml:mo stretchy=false>)</mml:mo><mml:mrow class=MJX-TeXAtom-ORD><mml:mo>∧<!-- ∧ --></mml:mo></mml:mrow></mml:msup></mml:mrow><mml:annotation encoding=application/x-tex>(T^{2n},omega +sqrt {-1}B)^{wedge }</mml:annotation></mml:semantics></mml:math></inline-formula>to each pair<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper L comma script upper L right-parenthesis><mml:semantics><mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:mi>L</mml:mi><mml:mo>,</mml:mo><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi class=MJX-tex-caligraphic mathvariant=script>L</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>(L,{mathcal L})</mml:annotation></mml:semantics></mml:math></inline-formula>of affine Lagrangian submanifolds<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L><mml:semantics><mml:mi>L</mml:mi><mml:annotation encoding=application/x-tex>L</mml:annotation></mml:semantics></mml:math></inline-formula>and a flat complex line bundle<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper L><mml:semantics><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi class=MJX-tex-caligraphic mathvariant=script>L</mml:mi></mml:mrow></mml:mrow><mml:annotation encoding=application/x-tex>{mathcal L}</mml:annotation></mml:semantics></mml:math></inline-formula>on<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L><mml:semantics><mml:mi>L</mml:mi><mml:annotation encoding=application/x-tex>L</mml:annotation></mml:semantics></mml:math></inline-formula>. In the case of affine Lagrangian submanifolds, we show that the Floer homology of Langrangian submanifolds is isomorphic to the extension of the mirror sheaf<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper E left-parenthesis upper L comma script upper L right-parenthesis><mml:semantics><mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi class=MJX-tex-caligraphic mathvariant=script>E</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:mi>L</mml:mi><mml:mo>,</mml:mo><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi class=MJX-tex-caligraphic mathvariant=script>L</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>{mathcal E}(L,{mathcal L})</mml:annotation></mml:semantics></mml:math></inline-formula>. We construct a canonical isomorphism in the case when a certain transversality condition is satisfied. Our isomorphism then is functorial." @default.
- W2100024891 created "2016-06-24" @default.
- W2100024891 creator A5046412940 @default.
- W2100024891 date "2002-02-27" @default.
- W2100024891 modified "2023-10-09" @default.
- W2100024891 title "Mirror symmetry of abelian varieties and multi-theta functions" @default.
- W2100024891 cites W101691459 @default.
- W2100024891 cites W1489426855 @default.
- W2100024891 cites W1491659223 @default.
- W2100024891 cites W1524038673 @default.
- W2100024891 cites W1537881567 @default.
- W2100024891 cites W1545729051 @default.
- W2100024891 cites W1568045038 @default.
- W2100024891 cites W1592796562 @default.
- W2100024891 cites W17451547 @default.
- W2100024891 cites W1800967450 @default.
- W2100024891 cites W1898649608 @default.
- W2100024891 cites W1990303340 @default.
- W2100024891 cites W1999716734 @default.
- W2100024891 cites W2016716371 @default.
- W2100024891 cites W2027025011 @default.
- W2100024891 cites W2027362535 @default.
- W2100024891 cites W2054902263 @default.
- W2100024891 cites W2064638721 @default.
- W2100024891 cites W2080773667 @default.
- W2100024891 cites W2081540171 @default.
- W2100024891 cites W2085286441 @default.
- W2100024891 cites W2094017794 @default.
- W2100024891 cites W2133314243 @default.
- W2100024891 cites W2146168872 @default.
- W2100024891 cites W2169107602 @default.
- W2100024891 cites W2500739438 @default.
- W2100024891 cites W2608444297 @default.
- W2100024891 cites W2949293231 @default.
- W2100024891 cites W3100469840 @default.
- W2100024891 cites W3102484428 @default.
- W2100024891 cites W4234843867 @default.
- W2100024891 cites W4236134964 @default.
- W2100024891 cites W4241828906 @default.
- W2100024891 cites W4245309579 @default.
- W2100024891 cites W4245696930 @default.
- W2100024891 cites W4246969172 @default.
- W2100024891 cites W4251006472 @default.
- W2100024891 cites W4299611468 @default.
- W2100024891 cites W3103324632 @default.
- W2100024891 doi "https://doi.org/10.1090/s1056-3911-02-00329-6" @default.
- W2100024891 hasPublicationYear "2002" @default.
- W2100024891 type Work @default.
- W2100024891 sameAs 2100024891 @default.
- W2100024891 citedByCount "94" @default.
- W2100024891 countsByYear W21000248912012 @default.
- W2100024891 countsByYear W21000248912013 @default.
- W2100024891 countsByYear W21000248912014 @default.
- W2100024891 countsByYear W21000248912015 @default.
- W2100024891 countsByYear W21000248912016 @default.
- W2100024891 countsByYear W21000248912017 @default.
- W2100024891 countsByYear W21000248912018 @default.
- W2100024891 countsByYear W21000248912019 @default.
- W2100024891 countsByYear W21000248912020 @default.
- W2100024891 countsByYear W21000248912021 @default.
- W2100024891 countsByYear W21000248912022 @default.
- W2100024891 countsByYear W21000248912023 @default.
- W2100024891 crossrefType "journal-article" @default.
- W2100024891 hasAuthorship W2100024891A5046412940 @default.
- W2100024891 hasBestOaLocation W21000248911 @default.
- W2100024891 hasConcept C11413529 @default.
- W2100024891 hasConcept C154945302 @default.
- W2100024891 hasConcept C41008148 @default.
- W2100024891 hasConceptScore W2100024891C11413529 @default.
- W2100024891 hasConceptScore W2100024891C154945302 @default.
- W2100024891 hasConceptScore W2100024891C41008148 @default.
- W2100024891 hasIssue "3" @default.
- W2100024891 hasLocation W21000248911 @default.
- W2100024891 hasOpenAccess W2100024891 @default.
- W2100024891 hasPrimaryLocation W21000248911 @default.
- W2100024891 hasRelatedWork W2051487156 @default.
- W2100024891 hasRelatedWork W2052122378 @default.
- W2100024891 hasRelatedWork W2053286651 @default.
- W2100024891 hasRelatedWork W2073681303 @default.
- W2100024891 hasRelatedWork W2317200988 @default.
- W2100024891 hasRelatedWork W2544423928 @default.
- W2100024891 hasRelatedWork W2947381795 @default.
- W2100024891 hasRelatedWork W2181413294 @default.
- W2100024891 hasRelatedWork W2181743346 @default.
- W2100024891 hasRelatedWork W2187401768 @default.
- W2100024891 hasVolume "11" @default.
- W2100024891 isParatext "false" @default.
- W2100024891 isRetracted "false" @default.
- W2100024891 magId "2100024891" @default.
- W2100024891 workType "article" @default.