Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100024921> ?p ?o ?g. }
- W2100024921 endingPage "79" @default.
- W2100024921 startingPage "71" @default.
- W2100024921 abstract "Chemical sensor drift shows a chaotic behavior and unpredictability in long-term observation which makes it difficult to construct an appropriate sensor drift treatment. The main purpose of this paper is to study a new methodology for chaotic time series modeling of chemical sensor observations in embedded phase space. This method realizes a long-term prediction of sensor baseline and drift based on phase space reconstruction (PSR) and radial basis function (RBF) neural network. PSR can memory all of the properties of a chaotic attractor and clearly show the motion trace of a time series, thus PSR makes the long-term drift prediction using RBF neural network possible. Experimental observation data of three metal oxide semiconductor sensors in a year demonstrate the obvious chaotic behavior through the Lyapunov exponents. Results demonstrate that the proposed model can make long-term and accurate prediction of chemical sensor baseline and drift time series." @default.
- W2100024921 created "2016-06-24" @default.
- W2100024921 creator A5014163989 @default.
- W2100024921 creator A5028133500 @default.
- W2100024921 creator A5034607072 @default.
- W2100024921 creator A5040329133 @default.
- W2100024921 creator A5080909831 @default.
- W2100024921 creator A5087052069 @default.
- W2100024921 date "2013-06-01" @default.
- W2100024921 modified "2023-10-14" @default.
- W2100024921 title "Chaotic time series prediction of E-nose sensor drift in embedded phase space" @default.
- W2100024921 cites W1966804955 @default.
- W2100024921 cites W1973798705 @default.
- W2100024921 cites W1973850896 @default.
- W2100024921 cites W1981332527 @default.
- W2100024921 cites W1996898660 @default.
- W2100024921 cites W2010461070 @default.
- W2100024921 cites W2010910059 @default.
- W2100024921 cites W2017060551 @default.
- W2100024921 cites W2022103656 @default.
- W2100024921 cites W2031383529 @default.
- W2100024921 cites W2044257293 @default.
- W2100024921 cites W2048344731 @default.
- W2100024921 cites W2061163529 @default.
- W2100024921 cites W2061959752 @default.
- W2100024921 cites W2066366061 @default.
- W2100024921 cites W20825669 @default.
- W2100024921 cites W2086924174 @default.
- W2100024921 cites W2086981746 @default.
- W2100024921 cites W2099244771 @default.
- W2100024921 cites W2102080413 @default.
- W2100024921 cites W2109132687 @default.
- W2100024921 cites W2118756059 @default.
- W2100024921 cites W2121595010 @default.
- W2100024921 cites W2124428761 @default.
- W2100024921 cites W2141394518 @default.
- W2100024921 cites W2146012751 @default.
- W2100024921 cites W2152254020 @default.
- W2100024921 doi "https://doi.org/10.1016/j.snb.2013.03.003" @default.
- W2100024921 hasPublicationYear "2013" @default.
- W2100024921 type Work @default.
- W2100024921 sameAs 2100024921 @default.
- W2100024921 citedByCount "59" @default.
- W2100024921 countsByYear W21000249212014 @default.
- W2100024921 countsByYear W21000249212015 @default.
- W2100024921 countsByYear W21000249212016 @default.
- W2100024921 countsByYear W21000249212017 @default.
- W2100024921 countsByYear W21000249212018 @default.
- W2100024921 countsByYear W21000249212019 @default.
- W2100024921 countsByYear W21000249212020 @default.
- W2100024921 countsByYear W21000249212021 @default.
- W2100024921 countsByYear W21000249212022 @default.
- W2100024921 countsByYear W21000249212023 @default.
- W2100024921 crossrefType "journal-article" @default.
- W2100024921 hasAuthorship W2100024921A5014163989 @default.
- W2100024921 hasAuthorship W2100024921A5028133500 @default.
- W2100024921 hasAuthorship W2100024921A5034607072 @default.
- W2100024921 hasAuthorship W2100024921A5040329133 @default.
- W2100024921 hasAuthorship W2100024921A5080909831 @default.
- W2100024921 hasAuthorship W2100024921A5087052069 @default.
- W2100024921 hasConcept C11413529 @default.
- W2100024921 hasConcept C121332964 @default.
- W2100024921 hasConcept C134306372 @default.
- W2100024921 hasConcept C143724316 @default.
- W2100024921 hasConcept C151342819 @default.
- W2100024921 hasConcept C151730666 @default.
- W2100024921 hasConcept C154945302 @default.
- W2100024921 hasConcept C164380108 @default.
- W2100024921 hasConcept C191544260 @default.
- W2100024921 hasConcept C2775924081 @default.
- W2100024921 hasConcept C2777052490 @default.
- W2100024921 hasConcept C33923547 @default.
- W2100024921 hasConcept C41008148 @default.
- W2100024921 hasConcept C47446073 @default.
- W2100024921 hasConcept C50644808 @default.
- W2100024921 hasConcept C86803240 @default.
- W2100024921 hasConcept C97355855 @default.
- W2100024921 hasConceptScore W2100024921C11413529 @default.
- W2100024921 hasConceptScore W2100024921C121332964 @default.
- W2100024921 hasConceptScore W2100024921C134306372 @default.
- W2100024921 hasConceptScore W2100024921C143724316 @default.
- W2100024921 hasConceptScore W2100024921C151342819 @default.
- W2100024921 hasConceptScore W2100024921C151730666 @default.
- W2100024921 hasConceptScore W2100024921C154945302 @default.
- W2100024921 hasConceptScore W2100024921C164380108 @default.
- W2100024921 hasConceptScore W2100024921C191544260 @default.
- W2100024921 hasConceptScore W2100024921C2775924081 @default.
- W2100024921 hasConceptScore W2100024921C2777052490 @default.
- W2100024921 hasConceptScore W2100024921C33923547 @default.
- W2100024921 hasConceptScore W2100024921C41008148 @default.
- W2100024921 hasConceptScore W2100024921C47446073 @default.
- W2100024921 hasConceptScore W2100024921C50644808 @default.
- W2100024921 hasConceptScore W2100024921C86803240 @default.
- W2100024921 hasConceptScore W2100024921C97355855 @default.
- W2100024921 hasLocation W21000249211 @default.
- W2100024921 hasOpenAccess W2100024921 @default.
- W2100024921 hasPrimaryLocation W21000249211 @default.
- W2100024921 hasRelatedWork W1533615325 @default.