Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100031962> ?p ?o ?g. }
- W2100031962 endingPage "84" @default.
- W2100031962 startingPage "67" @default.
- W2100031962 abstract "Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger manually labeled data sets, which severely limits the pace at which progress can be made. In this paper, we explore the potential of leveraging massive, weakly-labeled image collections for learning good visual features. We train convolutional networks on a dataset of 100 million Flickr photos and comments, and show that these networks produce features that perform well in a range of vision problems. We also show that the networks appropriately capture word similarity and learn correspondences between different languages." @default.
- W2100031962 created "2016-06-24" @default.
- W2100031962 creator A5017292577 @default.
- W2100031962 creator A5030266788 @default.
- W2100031962 creator A5041693326 @default.
- W2100031962 creator A5081649142 @default.
- W2100031962 date "2016-01-01" @default.
- W2100031962 modified "2023-09-30" @default.
- W2100031962 title "Learning Visual Features from Large Weakly Supervised Data" @default.
- W2100031962 cites W101201821 @default.
- W2100031962 cites W1590105591 @default.
- W2100031962 cites W1861492603 @default.
- W2100031962 cites W1897761818 @default.
- W2100031962 cites W1933349210 @default.
- W2100031962 cites W1938167356 @default.
- W2100031962 cites W1976921161 @default.
- W2100031962 cites W1977500159 @default.
- W2100031962 cites W1987063155 @default.
- W2100031962 cites W1987549167 @default.
- W2100031962 cites W1996140089 @default.
- W2100031962 cites W1997454659 @default.
- W2100031962 cites W2017814585 @default.
- W2100031962 cites W2018573225 @default.
- W2100031962 cites W2031342017 @default.
- W2100031962 cites W2037227137 @default.
- W2100031962 cites W2038765747 @default.
- W2100031962 cites W2062118960 @default.
- W2100031962 cites W2064675550 @default.
- W2100031962 cites W2070753207 @default.
- W2100031962 cites W2081613070 @default.
- W2100031962 cites W2097117768 @default.
- W2100031962 cites W2102605133 @default.
- W2100031962 cites W2107698128 @default.
- W2100031962 cites W2108598243 @default.
- W2100031962 cites W2117539524 @default.
- W2100031962 cites W2120725344 @default.
- W2100031962 cites W2122528955 @default.
- W2100031962 cites W2124219775 @default.
- W2100031962 cites W2145056192 @default.
- W2100031962 cites W2152161678 @default.
- W2100031962 cites W2161381512 @default.
- W2100031962 cites W2162950292 @default.
- W2100031962 cites W2169393274 @default.
- W2100031962 cites W2194775991 @default.
- W2100031962 cites W2202226326 @default.
- W2100031962 cites W2250384498 @default.
- W2100031962 cites W2533598788 @default.
- W2100031962 cites W2963932686 @default.
- W2100031962 cites W68733909 @default.
- W2100031962 doi "https://doi.org/10.1007/978-3-319-46478-7_5" @default.
- W2100031962 hasPublicationYear "2016" @default.
- W2100031962 type Work @default.
- W2100031962 sameAs 2100031962 @default.
- W2100031962 citedByCount "202" @default.
- W2100031962 countsByYear W21000319622016 @default.
- W2100031962 countsByYear W21000319622017 @default.
- W2100031962 countsByYear W21000319622018 @default.
- W2100031962 countsByYear W21000319622019 @default.
- W2100031962 countsByYear W21000319622020 @default.
- W2100031962 countsByYear W21000319622021 @default.
- W2100031962 countsByYear W21000319622022 @default.
- W2100031962 countsByYear W21000319622023 @default.
- W2100031962 crossrefType "book-chapter" @default.
- W2100031962 hasAuthorship W2100031962A5017292577 @default.
- W2100031962 hasAuthorship W2100031962A5030266788 @default.
- W2100031962 hasAuthorship W2100031962A5041693326 @default.
- W2100031962 hasAuthorship W2100031962A5081649142 @default.
- W2100031962 hasBestOaLocation W21000319622 @default.
- W2100031962 hasConcept C103278499 @default.
- W2100031962 hasConcept C108583219 @default.
- W2100031962 hasConcept C115961682 @default.
- W2100031962 hasConcept C119857082 @default.
- W2100031962 hasConcept C13280743 @default.
- W2100031962 hasConcept C153180895 @default.
- W2100031962 hasConcept C154945302 @default.
- W2100031962 hasConcept C159985019 @default.
- W2100031962 hasConcept C192562407 @default.
- W2100031962 hasConcept C204323151 @default.
- W2100031962 hasConcept C205649164 @default.
- W2100031962 hasConcept C2777526511 @default.
- W2100031962 hasConcept C41008148 @default.
- W2100031962 hasConcept C81363708 @default.
- W2100031962 hasConceptScore W2100031962C103278499 @default.
- W2100031962 hasConceptScore W2100031962C108583219 @default.
- W2100031962 hasConceptScore W2100031962C115961682 @default.
- W2100031962 hasConceptScore W2100031962C119857082 @default.
- W2100031962 hasConceptScore W2100031962C13280743 @default.
- W2100031962 hasConceptScore W2100031962C153180895 @default.
- W2100031962 hasConceptScore W2100031962C154945302 @default.
- W2100031962 hasConceptScore W2100031962C159985019 @default.
- W2100031962 hasConceptScore W2100031962C192562407 @default.
- W2100031962 hasConceptScore W2100031962C204323151 @default.
- W2100031962 hasConceptScore W2100031962C205649164 @default.
- W2100031962 hasConceptScore W2100031962C2777526511 @default.
- W2100031962 hasConceptScore W2100031962C41008148 @default.
- W2100031962 hasConceptScore W2100031962C81363708 @default.
- W2100031962 hasLocation W21000319621 @default.
- W2100031962 hasLocation W21000319622 @default.