Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100038054> ?p ?o ?g. }
- W2100038054 abstract "In just ten years, tropical geometry has established itself as an important new field bridging algebraic geometry and combinatorics whose techniques have been used to attack problems in both fields. It also has important connections to areas as diverse as geometric group theory, mirror symmetry, and phylogenetics. Our particular interest here is the tropical geometry associated to algebraic curves over a field with nonarchimedean valuation. This dissertation examines tropical curves from several angles.An abstract tropical curve is a vertex-weighted metric graph satisfying certain conditions (see Definition 2.2.1), while an embedded tropical curve takes the form of a 1-dimensional balanced polyhedral complex in R^n. Both combinatorial objects inform the study of algebraic curves over nonarchimedean fields. The connection between the two perspectives is also very rich and is developed e.g. in [Pay09] and [BPR11]; we give a brief overview in Chapter 1 as well as a contribution in Chapter 4.Chapters 2 and 3 are contributions to the study of abstract tropical curves. We begin in Chapter 2 by studying the moduli space of abstract tropical curves of genus g, the moduli space of principally polarized tropical abelian varieties, and the tropical Torelli map, as initiated in [BMV11]. We provide a detailed combinatorial and computational study of these objects and give a new definition of the category of stacky fans, of which the aforementioned moduli spaces are objects and the Torelli map is a morphism.In Chapter 3, we study the locus of tropical hyperelliptic curves inside the moduli space of tropical curves of genus g. Our work ties together two strands in the tropical geometry literature, namely the study of the tropical moduli space of curves and tropical Brill-Noether theory. Our methods are graph-theoretic and extend much of the work of Baker and Norine [BN09] on harmonic morphisms of graphs to the case of metric graphs. We also provide new computations of tropical hyperelliptic loci in the form of theorems describing their specific combinatorial structure.Chapter 4 presents joint work with Bernd Sturmfels and is a contribution to the study of tropical curves as balanced embedded 1-dimensional polyhedral complexes. We say that a plane cubic curve, defined over a field with valuation, is in honeycomb form if its tropicalization exhibits the standard hexagonal cycle shown in Figure 4.1. We explicitly compute such representations from a given j-invariant with negative valuation, we give an analytic characterization of elliptic curves in honeycomb form, and we offer a detailed analysis of the tropical group law on such a curve.Chapter 5 is joint work with Anders Jensen and Elena Rubei and is a departure from the subject of tropical curves. In this chapter, we study tropical determinantal varieties and prevarieties. After recalling the definitions of tropical prevarieties, varieties, and bases, we present a short proof that the 4×4 minors of a 5×n matrix of indeterminates form a tropical basis. The methods are combinatorial and involve a study of arrangements of tropical hyperplanes. Our result together with the results in [DSS05], [Shi10], [Shi11] answer completely the fundamental question of when the r × r minors of a d × n matrix form a tropical basis; see Table 5.1." @default.
- W2100038054 created "2016-06-24" @default.
- W2100038054 creator A5020887417 @default.
- W2100038054 date "2012-01-01" @default.
- W2100038054 modified "2023-09-27" @default.
- W2100038054 title "Tropical curves and metric graphs" @default.
- W2100038054 cites W1482907961 @default.
- W2100038054 cites W1485445902 @default.
- W2100038054 cites W1486898453 @default.
- W2100038054 cites W1536179593 @default.
- W2100038054 cites W1547019928 @default.
- W2100038054 cites W1549562143 @default.
- W2100038054 cites W1575722002 @default.
- W2100038054 cites W1586485728 @default.
- W2100038054 cites W1605965057 @default.
- W2100038054 cites W1612775541 @default.
- W2100038054 cites W1619043685 @default.
- W2100038054 cites W1633532382 @default.
- W2100038054 cites W164273335 @default.
- W2100038054 cites W1651614606 @default.
- W2100038054 cites W1683326984 @default.
- W2100038054 cites W1794573077 @default.
- W2100038054 cites W1796467332 @default.
- W2100038054 cites W1864714479 @default.
- W2100038054 cites W1966832055 @default.
- W2100038054 cites W1967330026 @default.
- W2100038054 cites W1974447478 @default.
- W2100038054 cites W1999526684 @default.
- W2100038054 cites W2008564600 @default.
- W2100038054 cites W2010122474 @default.
- W2100038054 cites W2010666540 @default.
- W2100038054 cites W2032234362 @default.
- W2100038054 cites W2033172904 @default.
- W2100038054 cites W2036822603 @default.
- W2100038054 cites W2048667371 @default.
- W2100038054 cites W2050170085 @default.
- W2100038054 cites W2060920153 @default.
- W2100038054 cites W2072505366 @default.
- W2100038054 cites W2078095196 @default.
- W2100038054 cites W2079988604 @default.
- W2100038054 cites W2081659888 @default.
- W2100038054 cites W2083387674 @default.
- W2100038054 cites W2089644649 @default.
- W2100038054 cites W2094058986 @default.
- W2100038054 cites W2106565816 @default.
- W2100038054 cites W2109095212 @default.
- W2100038054 cites W2116417328 @default.
- W2100038054 cites W2119087156 @default.
- W2100038054 cites W2128813808 @default.
- W2100038054 cites W2157464220 @default.
- W2100038054 cites W2171942149 @default.
- W2100038054 cites W2240922184 @default.
- W2100038054 cites W2255136811 @default.
- W2100038054 cites W2285813580 @default.
- W2100038054 cites W2484547531 @default.
- W2100038054 cites W2921669825 @default.
- W2100038054 cites W2950784146 @default.
- W2100038054 cites W2950876570 @default.
- W2100038054 cites W2962868659 @default.
- W2100038054 cites W2962881705 @default.
- W2100038054 cites W2963114720 @default.
- W2100038054 cites W2963438905 @default.
- W2100038054 cites W2963569381 @default.
- W2100038054 cites W2963646190 @default.
- W2100038054 hasPublicationYear "2012" @default.
- W2100038054 type Work @default.
- W2100038054 sameAs 2100038054 @default.
- W2100038054 citedByCount "3" @default.
- W2100038054 countsByYear W21000380542016 @default.
- W2100038054 countsByYear W21000380542019 @default.
- W2100038054 crossrefType "journal-article" @default.
- W2100038054 hasAuthorship W2100038054A5020887417 @default.
- W2100038054 hasConcept C11074058 @default.
- W2100038054 hasConcept C114614502 @default.
- W2100038054 hasConcept C12657307 @default.
- W2100038054 hasConcept C136170076 @default.
- W2100038054 hasConcept C137212723 @default.
- W2100038054 hasConcept C202444582 @default.
- W2100038054 hasConcept C202652594 @default.
- W2100038054 hasConcept C207043602 @default.
- W2100038054 hasConcept C2524010 @default.
- W2100038054 hasConcept C2777229593 @default.
- W2100038054 hasConcept C3387666 @default.
- W2100038054 hasConcept C33923547 @default.
- W2100038054 hasConcept C68363185 @default.
- W2100038054 hasConcept C73373263 @default.
- W2100038054 hasConceptScore W2100038054C11074058 @default.
- W2100038054 hasConceptScore W2100038054C114614502 @default.
- W2100038054 hasConceptScore W2100038054C12657307 @default.
- W2100038054 hasConceptScore W2100038054C136170076 @default.
- W2100038054 hasConceptScore W2100038054C137212723 @default.
- W2100038054 hasConceptScore W2100038054C202444582 @default.
- W2100038054 hasConceptScore W2100038054C202652594 @default.
- W2100038054 hasConceptScore W2100038054C207043602 @default.
- W2100038054 hasConceptScore W2100038054C2524010 @default.
- W2100038054 hasConceptScore W2100038054C2777229593 @default.
- W2100038054 hasConceptScore W2100038054C3387666 @default.
- W2100038054 hasConceptScore W2100038054C33923547 @default.
- W2100038054 hasConceptScore W2100038054C68363185 @default.
- W2100038054 hasConceptScore W2100038054C73373263 @default.