Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100038249> ?p ?o ?g. }
- W2100038249 abstract "The discovery of biclusters, which denote groups of items that show coherent values across a subset of all the transactions in a data set, is an important type of analysis performed on real-valued data sets in various domains, such as biology. Several algorithms have been proposed to find different types of biclusters in such data sets. However, these algorithms are unable to search the space of all possible biclusters exhaustively. Pattern mining algorithms in association analysis also essentially produce biclusters as their result, since the patterns consist of items that are supported by a subset of all the transactions. However, a major limitation of the numerous techniques developed in association analysis is that they are only able to analyze data sets with binary and/or categorical variables, and their application to real-valued data sets often involves some lossy transformation such as discretization or binarization of the attributes. In this paper, we propose a novel association analysis framework for exhaustively and efficiently mining range support patterns from such a data set. On one hand, this framework reduces the loss of information incurred by the binarization- and discretization-based approaches, and on the other, it enables the exhaustive discovery of coherent biclusters. We compared the performance of our framework with two standard biclustering algorithms through the evaluation of the similarity of the cellular functions of the genes constituting the patterns/biclusters derived by these algorithms from microarray data. These experiments show that the real-valued patterns discovered by our framework are better enriched by small biologically interesting functional classes. Also, through specific examples, we demonstrate the ability of the RAP framework to discover functionally enriched patterns that are not found by the commonly used biclustering algorithm ISA. The source code and data sets used in this paper, as well as the supplementary material, are available at http://www.cs.umn.edu/vk/gaurav/rap." @default.
- W2100038249 created "2016-06-24" @default.
- W2100038249 creator A5004812994 @default.
- W2100038249 creator A5022226374 @default.
- W2100038249 creator A5022878003 @default.
- W2100038249 creator A5047757229 @default.
- W2100038249 creator A5089436894 @default.
- W2100038249 date "2009-06-28" @default.
- W2100038249 modified "2023-09-23" @default.
- W2100038249 title "An association analysis approach to biclustering" @default.
- W2100038249 cites W1537336823 @default.
- W2100038249 cites W1538006201 @default.
- W2100038249 cites W1969842215 @default.
- W2100038249 cites W2000473687 @default.
- W2100038249 cites W2013017122 @default.
- W2100038249 cites W2046482984 @default.
- W2100038249 cites W2046705420 @default.
- W2100038249 cites W2057682468 @default.
- W2100038249 cites W2058849889 @default.
- W2100038249 cites W2092072097 @default.
- W2100038249 cites W2101060686 @default.
- W2100038249 cites W2103017472 @default.
- W2100038249 cites W2105883975 @default.
- W2100038249 cites W2110893883 @default.
- W2100038249 cites W2117211970 @default.
- W2100038249 cites W2117309679 @default.
- W2100038249 cites W2125642929 @default.
- W2100038249 cites W2126226510 @default.
- W2100038249 cites W2126449841 @default.
- W2100038249 cites W2131338731 @default.
- W2100038249 cites W2136107412 @default.
- W2100038249 cites W2138073318 @default.
- W2100038249 cites W2143274936 @default.
- W2100038249 cites W2144544802 @default.
- W2100038249 cites W2144792853 @default.
- W2100038249 cites W2145539275 @default.
- W2100038249 cites W2146264532 @default.
- W2100038249 cites W2152360905 @default.
- W2100038249 cites W2158128075 @default.
- W2100038249 cites W2158721538 @default.
- W2100038249 cites W2160434365 @default.
- W2100038249 cites W2166574880 @default.
- W2100038249 cites W2169896388 @default.
- W2100038249 cites W2293888039 @default.
- W2100038249 cites W2434205482 @default.
- W2100038249 doi "https://doi.org/10.1145/1557019.1557095" @default.
- W2100038249 hasPublicationYear "2009" @default.
- W2100038249 type Work @default.
- W2100038249 sameAs 2100038249 @default.
- W2100038249 citedByCount "48" @default.
- W2100038249 countsByYear W21000382492012 @default.
- W2100038249 countsByYear W21000382492013 @default.
- W2100038249 countsByYear W21000382492014 @default.
- W2100038249 countsByYear W21000382492015 @default.
- W2100038249 countsByYear W21000382492016 @default.
- W2100038249 countsByYear W21000382492018 @default.
- W2100038249 countsByYear W21000382492020 @default.
- W2100038249 countsByYear W21000382492021 @default.
- W2100038249 countsByYear W21000382492022 @default.
- W2100038249 crossrefType "proceedings-article" @default.
- W2100038249 hasAuthorship W2100038249A5004812994 @default.
- W2100038249 hasAuthorship W2100038249A5022226374 @default.
- W2100038249 hasAuthorship W2100038249A5022878003 @default.
- W2100038249 hasAuthorship W2100038249A5047757229 @default.
- W2100038249 hasAuthorship W2100038249A5089436894 @default.
- W2100038249 hasBestOaLocation W21000382492 @default.
- W2100038249 hasConcept C103278499 @default.
- W2100038249 hasConcept C11413529 @default.
- W2100038249 hasConcept C115961682 @default.
- W2100038249 hasConcept C119857082 @default.
- W2100038249 hasConcept C124101348 @default.
- W2100038249 hasConcept C134306372 @default.
- W2100038249 hasConcept C144817290 @default.
- W2100038249 hasConcept C153180895 @default.
- W2100038249 hasConcept C154945302 @default.
- W2100038249 hasConcept C17212007 @default.
- W2100038249 hasConcept C177264268 @default.
- W2100038249 hasConcept C193524817 @default.
- W2100038249 hasConcept C199360897 @default.
- W2100038249 hasConcept C33704608 @default.
- W2100038249 hasConcept C33923547 @default.
- W2100038249 hasConcept C41008148 @default.
- W2100038249 hasConcept C5274069 @default.
- W2100038249 hasConcept C73000952 @default.
- W2100038249 hasConcept C73555534 @default.
- W2100038249 hasConceptScore W2100038249C103278499 @default.
- W2100038249 hasConceptScore W2100038249C11413529 @default.
- W2100038249 hasConceptScore W2100038249C115961682 @default.
- W2100038249 hasConceptScore W2100038249C119857082 @default.
- W2100038249 hasConceptScore W2100038249C124101348 @default.
- W2100038249 hasConceptScore W2100038249C134306372 @default.
- W2100038249 hasConceptScore W2100038249C144817290 @default.
- W2100038249 hasConceptScore W2100038249C153180895 @default.
- W2100038249 hasConceptScore W2100038249C154945302 @default.
- W2100038249 hasConceptScore W2100038249C17212007 @default.
- W2100038249 hasConceptScore W2100038249C177264268 @default.
- W2100038249 hasConceptScore W2100038249C193524817 @default.
- W2100038249 hasConceptScore W2100038249C199360897 @default.
- W2100038249 hasConceptScore W2100038249C33704608 @default.
- W2100038249 hasConceptScore W2100038249C33923547 @default.