Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100045227> ?p ?o ?g. }
- W2100045227 endingPage "2836" @default.
- W2100045227 startingPage "2777" @default.
- W2100045227 abstract "Many collective classification (CC) algorithms have been shown to increase accuracy when instances are interrelated. However, CC algorithms must be carefully applied because their use of estimated labels can in some cases decrease accuracy. In this article, we show that managing this label uncertainty through cautious algorithmic behavior is essential to achieving maximal, robust performance. First, we describe cautious inference and explain how four well-known families of CC algorithms can be parameterized to use varying degrees of such caution. Second, we introduce cautious learning and show how it can be used to improve the performance of almost any CC algorithm, with or without cautious inference. We then evaluate cautious inference and learning for the four collective inference families, with three local classifiers and a range of both synthetic and real-world data. We find that cautious learning and cautious inference typically outperform less cautious approaches. In addition, we identify the data characteristics that predict more substantial performance differences. Our results reveal that the degree of caution used usually has a larger impact on performance than the choice of the underlying inference algorithm. Together, these results identify the most appropriate CC algorithms to use for particular task characteristics and explain multiple conflicting findings from prior CC research." @default.
- W2100045227 created "2016-06-24" @default.
- W2100045227 creator A5006386740 @default.
- W2100045227 creator A5063806691 @default.
- W2100045227 creator A5084685300 @default.
- W2100045227 date "2009-12-01" @default.
- W2100045227 modified "2023-09-23" @default.
- W2100045227 title "Cautious Collective Classification" @default.
- W2100045227 cites W1488357069 @default.
- W2100045227 cites W1534979469 @default.
- W2100045227 cites W1541824209 @default.
- W2100045227 cites W1554544485 @default.
- W2100045227 cites W1560512119 @default.
- W2100045227 cites W1561326744 @default.
- W2100045227 cites W1591304830 @default.
- W2100045227 cites W1605615716 @default.
- W2100045227 cites W1615454278 @default.
- W2100045227 cites W1666347389 @default.
- W2100045227 cites W1908728294 @default.
- W2100045227 cites W1934019294 @default.
- W2100045227 cites W1934992405 @default.
- W2100045227 cites W1977970897 @default.
- W2100045227 cites W2003170434 @default.
- W2100045227 cites W2017337590 @default.
- W2100045227 cites W2025646808 @default.
- W2100045227 cites W2028137574 @default.
- W2100045227 cites W2033193852 @default.
- W2100045227 cites W2048324994 @default.
- W2100045227 cites W2049073556 @default.
- W2100045227 cites W2076008912 @default.
- W2100045227 cites W2077949648 @default.
- W2100045227 cites W2098678088 @default.
- W2100045227 cites W2099352187 @default.
- W2100045227 cites W2101705355 @default.
- W2100045227 cites W2112617969 @default.
- W2100045227 cites W2114220616 @default.
- W2100045227 cites W2121250409 @default.
- W2100045227 cites W2123170466 @default.
- W2100045227 cites W2123562225 @default.
- W2100045227 cites W2123827533 @default.
- W2100045227 cites W2126653228 @default.
- W2100045227 cites W2129031807 @default.
- W2100045227 cites W2130354913 @default.
- W2100045227 cites W2132353975 @default.
- W2100045227 cites W2135863341 @default.
- W2100045227 cites W2137253512 @default.
- W2100045227 cites W2140127353 @default.
- W2100045227 cites W2153387921 @default.
- W2100045227 cites W2153959628 @default.
- W2100045227 cites W2159080219 @default.
- W2100045227 cites W2160842254 @default.
- W2100045227 cites W2161172169 @default.
- W2100045227 cites W2162630660 @default.
- W2100045227 cites W2165472456 @default.
- W2100045227 cites W2165599051 @default.
- W2100045227 cites W2167044614 @default.
- W2100045227 cites W2185268784 @default.
- W2100045227 cites W2187973725 @default.
- W2100045227 cites W2204197839 @default.
- W2100045227 cites W2540152923 @default.
- W2100045227 cites W2605441573 @default.
- W2100045227 cites W2962735828 @default.
- W2100045227 cites W2742193195 @default.
- W2100045227 doi "https://doi.org/10.5555/1577069.1755879" @default.
- W2100045227 hasPublicationYear "2009" @default.
- W2100045227 type Work @default.
- W2100045227 sameAs 2100045227 @default.
- W2100045227 citedByCount "33" @default.
- W2100045227 countsByYear W21000452272012 @default.
- W2100045227 countsByYear W21000452272013 @default.
- W2100045227 countsByYear W21000452272014 @default.
- W2100045227 countsByYear W21000452272015 @default.
- W2100045227 countsByYear W21000452272016 @default.
- W2100045227 countsByYear W21000452272017 @default.
- W2100045227 countsByYear W21000452272018 @default.
- W2100045227 countsByYear W21000452272019 @default.
- W2100045227 countsByYear W21000452272020 @default.
- W2100045227 crossrefType "journal-article" @default.
- W2100045227 hasAuthorship W2100045227A5006386740 @default.
- W2100045227 hasAuthorship W2100045227A5063806691 @default.
- W2100045227 hasAuthorship W2100045227A5084685300 @default.
- W2100045227 hasConcept C11413529 @default.
- W2100045227 hasConcept C119857082 @default.
- W2100045227 hasConcept C149782125 @default.
- W2100045227 hasConcept C154945302 @default.
- W2100045227 hasConcept C158600405 @default.
- W2100045227 hasConcept C159985019 @default.
- W2100045227 hasConcept C162324750 @default.
- W2100045227 hasConcept C165464430 @default.
- W2100045227 hasConcept C187736073 @default.
- W2100045227 hasConcept C192562407 @default.
- W2100045227 hasConcept C204323151 @default.
- W2100045227 hasConcept C2776214188 @default.
- W2100045227 hasConcept C2780451532 @default.
- W2100045227 hasConcept C33923547 @default.
- W2100045227 hasConcept C41008148 @default.
- W2100045227 hasConceptScore W2100045227C11413529 @default.
- W2100045227 hasConceptScore W2100045227C119857082 @default.