Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100052098> ?p ?o ?g. }
- W2100052098 endingPage "6365" @default.
- W2100052098 startingPage "6365" @default.
- W2100052098 abstract "To model liquid water correctly and to reproduce its structural, dynamic and thermodynamic properties warrants models that account accurately for electronic polarisation. We have previously demonstrated that polarisation can be represented by fluctuating multipole moments (derived by quantum chemical topology) predicted by multilayer perceptrons (MLPs) in response to the local structure of the cluster. Here we further develop this methodology of modeling polarisation enabling control of the balance between accuracy, in terms of errors in Coulomb energy and computing time. First, the predictive ability and speed of two additional machine learning methods, radial basis function neural networks (RBFNN) and Kriging, are assessed with respect to our previous MLP based polarisable water models, for water dimer, trimer, tetramer, pentamer and hexamer clusters. Compared to MLPs, we find that RBFNNs achieve a 14–26% decrease in median Coulomb energy error, with a factor 2.5–3 slowdown in speed, whilst Kriging achieves a 40–67% decrease in median energy error with a 6.5–8.5 factor slowdown in speed. Then, these compromises between accuracy and speed are improved upon through a simple multi-objective optimisation to identify Pareto-optimal combinations. Compared to the Kriging results, combinations are found that are no less accurate (at the 90th energy error percentile), yet are 58% faster for the dimer, and 26% faster for the pentamer." @default.
- W2100052098 created "2016-06-24" @default.
- W2100052098 creator A5048737234 @default.
- W2100052098 creator A5077370611 @default.
- W2100052098 creator A5078177431 @default.
- W2100052098 creator A5086480401 @default.
- W2100052098 date "2009-01-01" @default.
- W2100052098 modified "2023-10-17" @default.
- W2100052098 title "Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning" @default.
- W2100052098 cites W1526627686 @default.
- W2100052098 cites W1695379209 @default.
- W2100052098 cites W1964407030 @default.
- W2100052098 cites W1967108496 @default.
- W2100052098 cites W1968707287 @default.
- W2100052098 cites W1969134901 @default.
- W2100052098 cites W1969207031 @default.
- W2100052098 cites W1974570451 @default.
- W2100052098 cites W1975413270 @default.
- W2100052098 cites W1976499671 @default.
- W2100052098 cites W1978934537 @default.
- W2100052098 cites W1980605235 @default.
- W2100052098 cites W1981379867 @default.
- W2100052098 cites W1984007046 @default.
- W2100052098 cites W1985830810 @default.
- W2100052098 cites W1989678729 @default.
- W2100052098 cites W1991497609 @default.
- W2100052098 cites W1992733590 @default.
- W2100052098 cites W1993629105 @default.
- W2100052098 cites W1994755410 @default.
- W2100052098 cites W1998818837 @default.
- W2100052098 cites W2000998506 @default.
- W2100052098 cites W2001289126 @default.
- W2100052098 cites W2001597746 @default.
- W2100052098 cites W2012214628 @default.
- W2100052098 cites W2013988992 @default.
- W2100052098 cites W2014180960 @default.
- W2100052098 cites W2017337590 @default.
- W2100052098 cites W2017417570 @default.
- W2100052098 cites W2017891892 @default.
- W2100052098 cites W2020546548 @default.
- W2100052098 cites W2024149153 @default.
- W2100052098 cites W2027033103 @default.
- W2100052098 cites W2027060437 @default.
- W2100052098 cites W2035011219 @default.
- W2100052098 cites W2041383566 @default.
- W2100052098 cites W2042248098 @default.
- W2100052098 cites W2048643715 @default.
- W2100052098 cites W2049475242 @default.
- W2100052098 cites W2053247217 @default.
- W2100052098 cites W2055341112 @default.
- W2100052098 cites W2055585899 @default.
- W2100052098 cites W2057454882 @default.
- W2100052098 cites W2058408365 @default.
- W2100052098 cites W2058775963 @default.
- W2100052098 cites W2064919337 @default.
- W2100052098 cites W2066343603 @default.
- W2100052098 cites W2067194595 @default.
- W2100052098 cites W2071485472 @default.
- W2100052098 cites W2076036860 @default.
- W2100052098 cites W2076591604 @default.
- W2100052098 cites W2077501220 @default.
- W2100052098 cites W2077964123 @default.
- W2100052098 cites W2079541261 @default.
- W2100052098 cites W2081203523 @default.
- W2100052098 cites W2081926166 @default.
- W2100052098 cites W2082369519 @default.
- W2100052098 cites W2086614650 @default.
- W2100052098 cites W2087596773 @default.
- W2100052098 cites W2090564140 @default.
- W2100052098 cites W2091134667 @default.
- W2100052098 cites W2091147635 @default.
- W2100052098 cites W2091214494 @default.
- W2100052098 cites W2091792237 @default.
- W2100052098 cites W2093625674 @default.
- W2100052098 cites W2098043077 @default.
- W2100052098 cites W2110300847 @default.
- W2100052098 cites W2110651918 @default.
- W2100052098 cites W2112110447 @default.
- W2100052098 cites W2135628084 @default.
- W2100052098 cites W2137434066 @default.
- W2100052098 cites W2141479472 @default.
- W2100052098 cites W2143759264 @default.
- W2100052098 cites W2147216739 @default.
- W2100052098 cites W2149105617 @default.
- W2100052098 cites W2949836140 @default.
- W2100052098 cites W3104017686 @default.
- W2100052098 cites W343086395 @default.
- W2100052098 cites W4237492325 @default.
- W2100052098 cites W4238642012 @default.
- W2100052098 cites W4295199760 @default.
- W2100052098 doi "https://doi.org/10.1039/b905748j" @default.
- W2100052098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19809668" @default.
- W2100052098 hasPublicationYear "2009" @default.
- W2100052098 type Work @default.
- W2100052098 sameAs 2100052098 @default.
- W2100052098 citedByCount "119" @default.
- W2100052098 countsByYear W21000520982012 @default.
- W2100052098 countsByYear W21000520982013 @default.