Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100056901> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2100056901 endingPage "2156" @default.
- W2100056901 startingPage "2140" @default.
- W2100056901 abstract "We propose a multiple imputation method based on principal component analysis (PCA) to deal with incomplete continuous data. To reflect the uncertainty of the parameters from one imputation to the next, we use a Bayesian treatment of the PCA model. Using a simulation study and real data sets, the method is compared to two classical approaches: multiple imputation based on joint modelling and on fully conditional modelling. Contrary to the others, the proposed method can be easily used on data sets where the number of individuals is less than the number of variables and when the variables are highly correlated. In addition, it provides unbiased point estimates of quantities of interest, such as an expectation, a regression coefficient or a correlation coefficient, with a smaller mean squared error. Furthermore, the widths of the confidence intervals built for the quantities of interest are often smaller whilst ensuring a valid coverage." @default.
- W2100056901 created "2016-06-24" @default.
- W2100056901 creator A5055168255 @default.
- W2100056901 creator A5084745161 @default.
- W2100056901 creator A5089795083 @default.
- W2100056901 date "2015-10-27" @default.
- W2100056901 modified "2023-10-11" @default.
- W2100056901 title "Multiple imputation for continuous variables using a Bayesian principal component analysis" @default.
- W2100056901 cites W1124708747 @default.
- W2100056901 cites W1822348759 @default.
- W2100056901 cites W1987574265 @default.
- W2100056901 cites W1998487261 @default.
- W2100056901 cites W2016373637 @default.
- W2100056901 cites W2020960798 @default.
- W2100056901 cites W2049241760 @default.
- W2100056901 cites W2050623533 @default.
- W2100056901 cites W2057777484 @default.
- W2100056901 cites W2061461017 @default.
- W2100056901 cites W2081940622 @default.
- W2100056901 cites W2087691922 @default.
- W2100056901 cites W2102252264 @default.
- W2100056901 cites W2118502261 @default.
- W2100056901 cites W2125291718 @default.
- W2100056901 cites W2133896831 @default.
- W2100056901 cites W2134332047 @default.
- W2100056901 cites W2140968209 @default.
- W2100056901 cites W2161743657 @default.
- W2100056901 cites W2161920970 @default.
- W2100056901 cites W2317312849 @default.
- W2100056901 cites W381842185 @default.
- W2100056901 cites W4214604782 @default.
- W2100056901 cites W4300187280 @default.
- W2100056901 cites W612972800 @default.
- W2100056901 doi "https://doi.org/10.1080/00949655.2015.1104683" @default.
- W2100056901 hasPublicationYear "2015" @default.
- W2100056901 type Work @default.
- W2100056901 sameAs 2100056901 @default.
- W2100056901 citedByCount "44" @default.
- W2100056901 countsByYear W21000569012016 @default.
- W2100056901 countsByYear W21000569012018 @default.
- W2100056901 countsByYear W21000569012019 @default.
- W2100056901 countsByYear W21000569012020 @default.
- W2100056901 countsByYear W21000569012021 @default.
- W2100056901 countsByYear W21000569012022 @default.
- W2100056901 countsByYear W21000569012023 @default.
- W2100056901 crossrefType "journal-article" @default.
- W2100056901 hasAuthorship W2100056901A5055168255 @default.
- W2100056901 hasAuthorship W2100056901A5084745161 @default.
- W2100056901 hasAuthorship W2100056901A5089795083 @default.
- W2100056901 hasBestOaLocation W21000569014 @default.
- W2100056901 hasConcept C105795698 @default.
- W2100056901 hasConcept C107673813 @default.
- W2100056901 hasConcept C124101348 @default.
- W2100056901 hasConcept C139945424 @default.
- W2100056901 hasConcept C149782125 @default.
- W2100056901 hasConcept C27438332 @default.
- W2100056901 hasConcept C33923547 @default.
- W2100056901 hasConcept C41008148 @default.
- W2100056901 hasConcept C58041806 @default.
- W2100056901 hasConcept C83546350 @default.
- W2100056901 hasConcept C9357733 @default.
- W2100056901 hasConceptScore W2100056901C105795698 @default.
- W2100056901 hasConceptScore W2100056901C107673813 @default.
- W2100056901 hasConceptScore W2100056901C124101348 @default.
- W2100056901 hasConceptScore W2100056901C139945424 @default.
- W2100056901 hasConceptScore W2100056901C149782125 @default.
- W2100056901 hasConceptScore W2100056901C27438332 @default.
- W2100056901 hasConceptScore W2100056901C33923547 @default.
- W2100056901 hasConceptScore W2100056901C41008148 @default.
- W2100056901 hasConceptScore W2100056901C58041806 @default.
- W2100056901 hasConceptScore W2100056901C83546350 @default.
- W2100056901 hasConceptScore W2100056901C9357733 @default.
- W2100056901 hasIssue "11" @default.
- W2100056901 hasLocation W21000569011 @default.
- W2100056901 hasLocation W21000569012 @default.
- W2100056901 hasLocation W21000569013 @default.
- W2100056901 hasLocation W21000569014 @default.
- W2100056901 hasOpenAccess W2100056901 @default.
- W2100056901 hasPrimaryLocation W21000569011 @default.
- W2100056901 hasRelatedWork W2031127365 @default.
- W2100056901 hasRelatedWork W2043246077 @default.
- W2100056901 hasRelatedWork W2073980917 @default.
- W2100056901 hasRelatedWork W2105559915 @default.
- W2100056901 hasRelatedWork W2911362133 @default.
- W2100056901 hasRelatedWork W2967771611 @default.
- W2100056901 hasRelatedWork W314306847 @default.
- W2100056901 hasRelatedWork W3173796935 @default.
- W2100056901 hasRelatedWork W4207003862 @default.
- W2100056901 hasRelatedWork W2165189522 @default.
- W2100056901 hasVolume "86" @default.
- W2100056901 isParatext "false" @default.
- W2100056901 isRetracted "false" @default.
- W2100056901 magId "2100056901" @default.
- W2100056901 workType "article" @default.