Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100066980> ?p ?o ?g. }
- W2100066980 endingPage "1028" @default.
- W2100066980 startingPage "1020" @default.
- W2100066980 abstract "This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is greedy in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation." @default.
- W2100066980 created "2016-06-24" @default.
- W2100066980 creator A5041714982 @default.
- W2100066980 creator A5057940359 @default.
- W2100066980 creator A5061055202 @default.
- W2100066980 creator A5067016419 @default.
- W2100066980 date "2008-09-01" @default.
- W2100066980 modified "2023-09-27" @default.
- W2100066980 title "Greedy rule generation from discrete data and its use in neural network rule extraction" @default.
- W2100066980 cites W1971797045 @default.
- W2100066980 cites W1981249599 @default.
- W2100066980 cites W2001619934 @default.
- W2100066980 cites W2017592705 @default.
- W2100066980 cites W2027403201 @default.
- W2100066980 cites W2033500239 @default.
- W2100066980 cites W2036547589 @default.
- W2100066980 cites W2036677213 @default.
- W2100066980 cites W2053549901 @default.
- W2100066980 cites W2062154476 @default.
- W2100066980 cites W2088731307 @default.
- W2100066980 cites W2094558429 @default.
- W2100066980 cites W2110155524 @default.
- W2100066980 cites W2111719156 @default.
- W2100066980 cites W2112036221 @default.
- W2100066980 cites W2116643976 @default.
- W2100066980 cites W2123060977 @default.
- W2100066980 cites W2136734237 @default.
- W2100066980 cites W2143718527 @default.
- W2100066980 cites W2145470394 @default.
- W2100066980 cites W2155092378 @default.
- W2100066980 cites W4212971335 @default.
- W2100066980 cites W4234760406 @default.
- W2100066980 doi "https://doi.org/10.1016/j.neunet.2008.01.003" @default.
- W2100066980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18442894" @default.
- W2100066980 hasPublicationYear "2008" @default.
- W2100066980 type Work @default.
- W2100066980 sameAs 2100066980 @default.
- W2100066980 citedByCount "50" @default.
- W2100066980 countsByYear W21000669802012 @default.
- W2100066980 countsByYear W21000669802013 @default.
- W2100066980 countsByYear W21000669802014 @default.
- W2100066980 countsByYear W21000669802015 @default.
- W2100066980 countsByYear W21000669802016 @default.
- W2100066980 countsByYear W21000669802017 @default.
- W2100066980 countsByYear W21000669802018 @default.
- W2100066980 countsByYear W21000669802020 @default.
- W2100066980 countsByYear W21000669802021 @default.
- W2100066980 countsByYear W21000669802022 @default.
- W2100066980 crossrefType "journal-article" @default.
- W2100066980 hasAuthorship W2100066980A5041714982 @default.
- W2100066980 hasAuthorship W2100066980A5057940359 @default.
- W2100066980 hasAuthorship W2100066980A5061055202 @default.
- W2100066980 hasAuthorship W2100066980A5067016419 @default.
- W2100066980 hasConcept C11413529 @default.
- W2100066980 hasConcept C124101348 @default.
- W2100066980 hasConcept C134306372 @default.
- W2100066980 hasConcept C149271511 @default.
- W2100066980 hasConcept C153180895 @default.
- W2100066980 hasConcept C154945302 @default.
- W2100066980 hasConcept C177264268 @default.
- W2100066980 hasConcept C199360897 @default.
- W2100066980 hasConcept C33923547 @default.
- W2100066980 hasConcept C41008148 @default.
- W2100066980 hasConcept C50644808 @default.
- W2100066980 hasConcept C51823790 @default.
- W2100066980 hasConcept C73000952 @default.
- W2100066980 hasConceptScore W2100066980C11413529 @default.
- W2100066980 hasConceptScore W2100066980C124101348 @default.
- W2100066980 hasConceptScore W2100066980C134306372 @default.
- W2100066980 hasConceptScore W2100066980C149271511 @default.
- W2100066980 hasConceptScore W2100066980C153180895 @default.
- W2100066980 hasConceptScore W2100066980C154945302 @default.
- W2100066980 hasConceptScore W2100066980C177264268 @default.
- W2100066980 hasConceptScore W2100066980C199360897 @default.
- W2100066980 hasConceptScore W2100066980C33923547 @default.
- W2100066980 hasConceptScore W2100066980C41008148 @default.
- W2100066980 hasConceptScore W2100066980C50644808 @default.
- W2100066980 hasConceptScore W2100066980C51823790 @default.
- W2100066980 hasConceptScore W2100066980C73000952 @default.
- W2100066980 hasIssue "7" @default.
- W2100066980 hasLocation W21000669801 @default.
- W2100066980 hasLocation W21000669802 @default.
- W2100066980 hasOpenAccess W2100066980 @default.
- W2100066980 hasPrimaryLocation W21000669801 @default.
- W2100066980 hasRelatedWork W2033914206 @default.
- W2100066980 hasRelatedWork W2040186499 @default.
- W2100066980 hasRelatedWork W2066091055 @default.
- W2100066980 hasRelatedWork W2146076056 @default.
- W2100066980 hasRelatedWork W2163831990 @default.
- W2100066980 hasRelatedWork W2386387936 @default.
- W2100066980 hasRelatedWork W3003265541 @default.
- W2100066980 hasRelatedWork W3005925217 @default.
- W2100066980 hasRelatedWork W4287871663 @default.
- W2100066980 hasRelatedWork W4377003522 @default.
- W2100066980 hasVolume "21" @default.
- W2100066980 isParatext "false" @default.
- W2100066980 isRetracted "false" @default.
- W2100066980 magId "2100066980" @default.