Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100070345> ?p ?o ?g. }
- W2100070345 endingPage "159" @default.
- W2100070345 startingPage "151" @default.
- W2100070345 abstract "Abstract Motivation: Feature selection is a key concept in machine learning for microarray datasets, where features represented by probesets are typically several orders of magnitude larger than the available sample size. Computational tractability is a key challenge for feature selection algorithms in handling very high-dimensional datasets beyond a hundred thousand features, such as in datasets produced on single nucleotide polymorphism microarrays. In this article, we present a novel feature set reduction approach that enables scalable feature selection on datasets with hundreds of thousands of features and beyond. Our approach enables more efficient handling of higher resolution datasets to achieve better disease subtype classification of samples for potentially more accurate diagnosis and prognosis, which allows clinicians to make more informed decisions in regards to patient treatment options. Results: We applied our feature set reduction approach to several publicly available cancer single nucleotide polymorphism (SNP) array datasets and evaluated its performance in terms of its multiclass predictive classification accuracy over different cancer subtypes, its speedup in execution as well as its scalability with respect to sample size and array resolution. Feature Set Reduction (FSR) was able to reduce the dimensions of an SNP array dataset by more than two orders of magnitude while achieving at least equal, and in most cases superior predictive classification performance over that achieved on features selected by existing feature selection methods alone. An examination of the biological relevance of frequently selected features from FSR-reduced feature sets revealed strong enrichment in association with cancer. Availability: FSR was implemented in MATLAB R2010b and is available at http://ww2.cs.mu.oz.au/~gwong/FSR Contact: gwong@csse.unimelb.edu.au Supplementary information: Supplementary data are available from Bioinformatics online." @default.
- W2100070345 created "2016-06-24" @default.
- W2100070345 creator A5009344626 @default.
- W2100070345 creator A5029760705 @default.
- W2100070345 creator A5076014464 @default.
- W2100070345 date "2011-11-21" @default.
- W2100070345 modified "2023-10-13" @default.
- W2100070345 title "FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number" @default.
- W2100070345 cites W1872140588 @default.
- W2100070345 cites W1966701961 @default.
- W2100070345 cites W1971068129 @default.
- W2100070345 cites W1990012864 @default.
- W2100070345 cites W1999084733 @default.
- W2100070345 cites W2016440433 @default.
- W2100070345 cites W2042960439 @default.
- W2100070345 cites W2058401000 @default.
- W2100070345 cites W2063882823 @default.
- W2100070345 cites W2064641360 @default.
- W2100070345 cites W2099193196 @default.
- W2100070345 cites W2103771794 @default.
- W2100070345 cites W2111337284 @default.
- W2100070345 cites W2119387367 @default.
- W2100070345 cites W2133949619 @default.
- W2100070345 cites W2136723735 @default.
- W2100070345 cites W2136869804 @default.
- W2100070345 cites W2152036878 @default.
- W2100070345 cites W2154053567 @default.
- W2100070345 cites W2157596388 @default.
- W2100070345 cites W2158282808 @default.
- W2100070345 cites W2168546553 @default.
- W2100070345 doi "https://doi.org/10.1093/bioinformatics/btr644" @default.
- W2100070345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22110244" @default.
- W2100070345 hasPublicationYear "2011" @default.
- W2100070345 type Work @default.
- W2100070345 sameAs 2100070345 @default.
- W2100070345 citedByCount "11" @default.
- W2100070345 countsByYear W21000703452013 @default.
- W2100070345 countsByYear W21000703452014 @default.
- W2100070345 countsByYear W21000703452016 @default.
- W2100070345 countsByYear W21000703452017 @default.
- W2100070345 countsByYear W21000703452018 @default.
- W2100070345 countsByYear W21000703452019 @default.
- W2100070345 countsByYear W21000703452020 @default.
- W2100070345 countsByYear W21000703452022 @default.
- W2100070345 crossrefType "journal-article" @default.
- W2100070345 hasAuthorship W2100070345A5009344626 @default.
- W2100070345 hasAuthorship W2100070345A5029760705 @default.
- W2100070345 hasAuthorship W2100070345A5076014464 @default.
- W2100070345 hasBestOaLocation W21000703451 @default.
- W2100070345 hasConcept C111919701 @default.
- W2100070345 hasConcept C119857082 @default.
- W2100070345 hasConcept C124101348 @default.
- W2100070345 hasConcept C138885662 @default.
- W2100070345 hasConcept C148483581 @default.
- W2100070345 hasConcept C153180895 @default.
- W2100070345 hasConcept C154945302 @default.
- W2100070345 hasConcept C177264268 @default.
- W2100070345 hasConcept C199360897 @default.
- W2100070345 hasConcept C2776401178 @default.
- W2100070345 hasConcept C41008148 @default.
- W2100070345 hasConcept C41895202 @default.
- W2100070345 hasConcept C48044578 @default.
- W2100070345 hasConcept C68339613 @default.
- W2100070345 hasConcept C70518039 @default.
- W2100070345 hasConcept C77088390 @default.
- W2100070345 hasConceptScore W2100070345C111919701 @default.
- W2100070345 hasConceptScore W2100070345C119857082 @default.
- W2100070345 hasConceptScore W2100070345C124101348 @default.
- W2100070345 hasConceptScore W2100070345C138885662 @default.
- W2100070345 hasConceptScore W2100070345C148483581 @default.
- W2100070345 hasConceptScore W2100070345C153180895 @default.
- W2100070345 hasConceptScore W2100070345C154945302 @default.
- W2100070345 hasConceptScore W2100070345C177264268 @default.
- W2100070345 hasConceptScore W2100070345C199360897 @default.
- W2100070345 hasConceptScore W2100070345C2776401178 @default.
- W2100070345 hasConceptScore W2100070345C41008148 @default.
- W2100070345 hasConceptScore W2100070345C41895202 @default.
- W2100070345 hasConceptScore W2100070345C48044578 @default.
- W2100070345 hasConceptScore W2100070345C68339613 @default.
- W2100070345 hasConceptScore W2100070345C70518039 @default.
- W2100070345 hasConceptScore W2100070345C77088390 @default.
- W2100070345 hasIssue "2" @default.
- W2100070345 hasLocation W21000703451 @default.
- W2100070345 hasLocation W21000703452 @default.
- W2100070345 hasOpenAccess W2100070345 @default.
- W2100070345 hasPrimaryLocation W21000703451 @default.
- W2100070345 hasRelatedWork W1996267020 @default.
- W2100070345 hasRelatedWork W2108104958 @default.
- W2100070345 hasRelatedWork W2144653557 @default.
- W2100070345 hasRelatedWork W2347213675 @default.
- W2100070345 hasRelatedWork W2349378567 @default.
- W2100070345 hasRelatedWork W2350494610 @default.
- W2100070345 hasRelatedWork W2374344280 @default.
- W2100070345 hasRelatedWork W2385233088 @default.
- W2100070345 hasRelatedWork W4213121036 @default.
- W2100070345 hasRelatedWork W4293525103 @default.
- W2100070345 hasVolume "28" @default.
- W2100070345 isParatext "false" @default.