Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100076566> ?p ?o ?g. }
- W2100076566 abstract "While a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants.The amino acid descriptor sets compared here show similar performance (<0.1 log units RMSE difference and <0.1 difference in MCC), while errors for individual proteins were in some cases found to be larger than those resulting from descriptor set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last.While amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still - on average - surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that choosing an appropriate descriptor set is of fundamental for bioactivity modeling, both from the ligand- as well as the protein side." @default.
- W2100076566 created "2016-06-24" @default.
- W2100076566 creator A5015253529 @default.
- W2100076566 creator A5026643759 @default.
- W2100076566 creator A5055066693 @default.
- W2100076566 creator A5065525958 @default.
- W2100076566 creator A5071633762 @default.
- W2100076566 creator A5081681147 @default.
- W2100076566 creator A5088996741 @default.
- W2100076566 creator A5091416834 @default.
- W2100076566 date "2013-09-24" @default.
- W2100076566 modified "2023-10-14" @default.
- W2100076566 title "Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets" @default.
- W2100076566 cites W1590976499 @default.
- W2100076566 cites W1651886044 @default.
- W2100076566 cites W1970275325 @default.
- W2100076566 cites W1971769921 @default.
- W2100076566 cites W1980497258 @default.
- W2100076566 cites W1981672180 @default.
- W2100076566 cites W1982131304 @default.
- W2100076566 cites W1983479017 @default.
- W2100076566 cites W1986124907 @default.
- W2100076566 cites W1988022890 @default.
- W2100076566 cites W1988037271 @default.
- W2100076566 cites W1988259820 @default.
- W2100076566 cites W1988909822 @default.
- W2100076566 cites W1995530068 @default.
- W2100076566 cites W1999334142 @default.
- W2100076566 cites W2000671825 @default.
- W2100076566 cites W2002839414 @default.
- W2100076566 cites W2003488516 @default.
- W2100076566 cites W2004967944 @default.
- W2100076566 cites W2005767066 @default.
- W2100076566 cites W2021083597 @default.
- W2100076566 cites W2023306209 @default.
- W2100076566 cites W2024213882 @default.
- W2100076566 cites W2028637464 @default.
- W2100076566 cites W2031082559 @default.
- W2100076566 cites W2045958990 @default.
- W2100076566 cites W2046842230 @default.
- W2100076566 cites W2049454409 @default.
- W2100076566 cites W2051627306 @default.
- W2100076566 cites W2064899634 @default.
- W2100076566 cites W2068271330 @default.
- W2100076566 cites W2078047353 @default.
- W2100076566 cites W2078346619 @default.
- W2100076566 cites W2082243980 @default.
- W2100076566 cites W2083441174 @default.
- W2100076566 cites W2086565769 @default.
- W2100076566 cites W2096541451 @default.
- W2100076566 cites W2098761867 @default.
- W2100076566 cites W2098972483 @default.
- W2100076566 cites W2106440817 @default.
- W2100076566 cites W2107432340 @default.
- W2100076566 cites W2109553965 @default.
- W2100076566 cites W2117925185 @default.
- W2100076566 cites W2126624551 @default.
- W2100076566 cites W2129637200 @default.
- W2100076566 cites W2142209403 @default.
- W2100076566 cites W2148972970 @default.
- W2100076566 cites W2155894387 @default.
- W2100076566 cites W2160257187 @default.
- W2100076566 cites W2162011385 @default.
- W2100076566 cites W2162830271 @default.
- W2100076566 cites W2316533333 @default.
- W2100076566 cites W4249658209 @default.
- W2100076566 cites W4249920046 @default.
- W2100076566 cites W4252684946 @default.
- W2100076566 doi "https://doi.org/10.1186/1758-2946-5-42" @default.
- W2100076566 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4015169" @default.
- W2100076566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24059743" @default.
- W2100076566 hasPublicationYear "2013" @default.
- W2100076566 type Work @default.
- W2100076566 sameAs 2100076566 @default.
- W2100076566 citedByCount "63" @default.
- W2100076566 countsByYear W21000765662013 @default.
- W2100076566 countsByYear W21000765662014 @default.
- W2100076566 countsByYear W21000765662015 @default.
- W2100076566 countsByYear W21000765662016 @default.
- W2100076566 countsByYear W21000765662017 @default.
- W2100076566 countsByYear W21000765662018 @default.
- W2100076566 countsByYear W21000765662019 @default.
- W2100076566 countsByYear W21000765662020 @default.
- W2100076566 countsByYear W21000765662021 @default.
- W2100076566 countsByYear W21000765662022 @default.
- W2100076566 countsByYear W21000765662023 @default.
- W2100076566 crossrefType "journal-article" @default.
- W2100076566 hasAuthorship W2100076566A5015253529 @default.
- W2100076566 hasAuthorship W2100076566A5026643759 @default.
- W2100076566 hasAuthorship W2100076566A5055066693 @default.
- W2100076566 hasAuthorship W2100076566A5065525958 @default.
- W2100076566 hasAuthorship W2100076566A5071633762 @default.
- W2100076566 hasAuthorship W2100076566A5081681147 @default.
- W2100076566 hasAuthorship W2100076566A5088996741 @default.
- W2100076566 hasAuthorship W2100076566A5091416834 @default.
- W2100076566 hasBestOaLocation W21000765661 @default.
- W2100076566 hasConcept C105795698 @default.
- W2100076566 hasConcept C121332964 @default.
- W2100076566 hasConcept C124101348 @default.
- W2100076566 hasConcept C138885662 @default.