Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100079347> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2100079347 endingPage "2449" @default.
- W2100079347 startingPage "2443" @default.
- W2100079347 abstract "BioanalysisVol. 7, No. 19 CommentaryChemical derivatization in LC–MS bioanalysis: current & future challengesMakoto Niwa, Miyuki Watanabe & Noriko WatanabeMakoto Niwa*Author for correspondence: E-mail Address: makoto.niwa@nipponkayaku.co.jp Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., 3-31-12, Shimo, Kita-ku, Tokyo, 115–8588, JapanSearch for more papers by this author, Miyuki Watanabe Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., 3-31-12, Shimo, Kita-ku, Tokyo, 115–8588, JapanSearch for more papers by this author & Noriko Watanabe Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., 3-31-12, Shimo, Kita-ku, Tokyo, 115–8588, JapanSearch for more papers by this authorPublished Online:15 Oct 2015https://doi.org/10.4155/bio.15.177AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: analytical chemistrychemical derivatizationclick chemistrylaser capture microdissectionliquid extraction surface analysisPapers of special note have been highlighted as: • of interest; •• of considerable interestReferences1 Niwa M. Chemical derivatization as a tool for optimizing MS response in sensitive LC–MS/MS bioanalysis and its role in pharmacokinetic studies. Bioanalysis 4(2), 213–220 (2012).Link, CAS, Google Scholar2 Deng P, Zhan Y, Chen X et al. Derivatization methods for quantitative bioanalysis by LC–MS/MS. Bioanalysis 4(1), 49–69 (2012).Link, CAS, Google Scholar3 Farajzadeh MA, Nouri N, Khorram P. Derivatization and microextraction methods for determination of organic compounds by gas chromatography. Trends Analyt. Chem. 55, 14–23 (2014).Crossref, CAS, Google Scholar4 Novakova L, Havlikova L, Vlckova H. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. Trends Analyt. Chem. 63, 55–64 (2014).Crossref, CAS, Google Scholar5 Fallas MM, Neue UD, Hadley MR et al. Investigation of the effect of pressure on retention of small molecules using reversed-phase ultra-high-pressure liquid chromatography. J. Chromatogr. A 1209(1–2), 195–205 (2008).Crossref, Medline, CAS, Google Scholar6 Fallas MM, Neue UD, Hadley MR et al. Further investigations of the effect of pressure on retention in ultra-high-pressure liquid chromatography. J. Chromatogr. A 1217(3), 276–284 (2010).Crossref, Medline, CAS, Google Scholar7 Cech NB, Enke CG. Relating electrospray ionization response to nonpolar character of small peptides. Anal. Chem. 72(13), 2717–2723 (2000).Crossref, Medline, CAS, Google Scholar8 Cech NB, Enke CG. Effect of affinity for droplet surfaces on the fraction of analyte molecules charged during electrospray droplet fission. Anal. Chem. 73(19), 4632–4639 (2001).Crossref, Medline, CAS, Google Scholar9 Ehrmann BM, Henriksen T, Cech NB. Relative importance of basicity in the gas Phase and in solution for determining selectivity in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 19(5), 719–728 (2008).Crossref, Medline, CAS, Google Scholar10 Knapp DR. Handbook of Analytical Derivatization Reactions. John Wiley & Sons, NY, USA (1979).• Traditional but important handbook of chemical derivatization.Google Scholar11 Blau K, Halket JM. Handbook of Derivatives for Chromatography. Wiley, Chichester, UK (1993).• Another traditional but important handbook of chemical derivatization. These two handbooks are orthogonal.Google Scholar12 Qi BL, Liu P, Wang QY et al. Derivatization for liquid chromatography-mass spectrometry. Trends Analyt. Chem. 59, 121–132 (2014).Crossref, CAS, Google Scholar13 Santa T. Recent advances in development and application of derivatization reagents having a benzofurazan structure: a brief overview. Biomed. Chromatogr. 28(6), 760–766 (2014).Crossref, Medline, CAS, Google Scholar14 Yamashita K, Yamazaki K, Komatsu S et al. Fusaric acid as a novel proton-affinitive derivatizing reagent for highly sensitive quantification of hydroxysteroids by LC–ESI-MS/MS. J. Am. Soc. Mass Spectrom. 21(2), 249–253 (2010).Crossref, Medline, CAS, Google Scholar15 Li Y, Xu LL, Ruan JX et al. Research progress of enhancing quantitative sensitivity by using LC–MSn with derivatization method in bio-matrices. Yaoxue Xuebao 46(6), 637–641 (2011).Google Scholar16 Santa T. Isothiocyanates as derivatization reagents for amines in liquid chromatography/electrospray ionization-tandem mass spectrometry. Biomed. Chromatogr. 24(9), 915–918 (2010).Crossref, Medline, CAS, Google Scholar17 Iwasaki Y, Nakano Y, Mochizuki K et al. A new strategy for ionization enhancement by derivatization for mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(17–18), 1159–1165 (2011).Crossref, Medline, CAS, Google Scholar18 Carr PW, Dolan JW, Neue UD et al. Contributions to reversed-phase column selectivity. I. Steric interaction. J. Chromatogr. A 1218(13), 1724–1742 (2011).Crossref, Medline, CAS, Google Scholar19 Niwa M, Watanabe N, Ochiai H et al. Determination of testosterone concentrations in rat plasma using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry combined with ethyl oxime and acetyl ester derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 824(1–2), 258–266 (2005).Crossref, Medline, CAS, Google Scholar20 Engelhardt H, Nikolov M, Arangio M et al. Studies on shape selectivity of RP C18-columns. Chromatographia 48(3–4), 183–189 (1998).Crossref, CAS, Google Scholar21 Kalhorn TF, Page ST, Howald WN et al. Analysis of testosterone and dihydrotestosterone from biological fluids as the oxime derivatives using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21(19), 3200–3206 (2007).Crossref, Medline, CAS, Google Scholar22 Yamashita K, Miyashiro Y, Maekubo H et al. Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 74(12), 920–926 (2009).Crossref, Medline, CAS, Google Scholar23 Theile D, Detering JC, Herold-Mende C et al. Cellular pharmacokinetic/pharmacodynamic relationship of platinum cytostatics in head and neck squamous cell carcinoma evaluated by liquid chromatography coupled to tandem mass spectrometry. J. Pharmacol. Exp. Ther. 341(1), 51–58 (2012).Crossref, Medline, CAS, Google Scholar24 Minakata K, Nozawa H, Okamoto N et al. Determination of platinum derived from cisplatin in human tissues using electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 832(2), 286–291 (2006).Crossref, Medline, CAS, Google Scholar25 O'brien Z, Post N, Brown M et al. Validation and application of a liquid chromatography–tandem mass spectrometric method for the simultaneous determination of testosterone and dihydrotestosterone in rat prostatic tissue using a 96-well format. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(29), 3515–3521 (2009).• Description of efforts in downsizing the reaction and work-up vessels.Crossref, Medline, Google Scholar26 Murphy JP, Johnson J, Rainville PD. Enhancing Mass Spectrometry Sensitivity by Reducing Chromatographic Flow Rates with ionKey/MS. Waters Corporation White Paper, 720004967EN (2014). www.waters.com/webassets/cms/library/docs/720004967en.pdf•• Interesting report describing the factors affecting sensitivity in microflow ESI.Google Scholar27 Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8(24), 1128–1137 (2003).Crossref, Medline, CAS, Google Scholar28 Fukushima H, Abe T, Tsujimoto A et al. TAS-106, a newly synthesized RNA polymerase inhibitor, combined with cisplatin exhibits potent synergistic growth-inhibitory effect via Vaults dysfunction. Cancer Res. 72(8), Abstract 2757 (2012).Crossref, Medline, Google Scholar29 Hrdlicka PJ, Andersen NK, Jepsen JS et al. Synthesis and biological evaluation of branched and conformationally restricted analogs of the anticancer compounds 3′-C-ethynyluridine (EUrd) and 3′-C-ethynylcytidine (ECyd). Bioorg. Med. Chem. 13(7), 2597–2621 (2005).Crossref, Medline, CAS, Google Scholar30 Wild MJ, Rudland PS, Back DJ. Metabolism of the oral contraceptive steroids ethynylestradiol, norgestimate and 3-ketodesogestrel by a human endometrial cancer cell line (HEC-1A) and endometrial tissue in vitro. J. Steroid Biochem. Mol. Biol. 45(5), 407–420 (1993).Crossref, Medline, CAS, Google Scholar31 Michailidis E, Huber AD, Ryan EM et al. 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) inhibits HIV-1 reverse transcriptase with multiple mechanisms. J. Biol. Chem. 289(35), 24533–24548 (2014).Crossref, Medline, CAS, Google Scholar32 Jao CY, Salic A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl Acad. Sci. USA 105(41), 15779–15784 (2008).Crossref, Medline, CAS, Google Scholar33 Johann Jr DJ, Rodriguez-Canales J, Mukherjee S et al. Approaching solid tumor heterogeneity on a cellular basis by tissue proteomics using laser capture microdissection and biological mass spectrometry. J. Proteome Res. 8(5), 2310–2318 (2009).Crossref, Medline, CAS, Google Scholar34 Eikel D, Vavrek M, Smith S et al. Liquid extraction surface analysis mass spectrometry (LESA-MS) as a novel profiling tool for drug distribution and metabolism analysis: the terfenadine example. Rapid Commun. Mass Spectrom. 25(23), 3587–3596 (2011).• Interesting application of liquid extraction surface analysis MS in bioanalysis.Crossref, Medline, CAS, Google Scholar35 Iwahata D, Nakamura K, Yamada R et al. A new metal tag for highly selective and sensitive analyses of amino acids and dipeptides by HPLC/ICP-MS. J. Anal. Sci. Meth. Instrum. 3, 80–89 (2013).Google ScholarFiguresReferencesRelatedDetailsCited ByQuantitative analysis of the relationship of derivatization reagents and detection sensitivity of electrospray ionization-triple quadrupole tandem mass spectrometry: Hydrazines as prototypesAnalytica Chimica Acta, Vol. 1158Derivatization procedures and their analytical performances for HPLC determination in bioanalysis24 November 2020 | Biomedical Chromatography, Vol. 35, No. 1In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines2 June 2020 | Analytical Chemistry, Vol. 92, No. 13Quantitative Profiling of Platelet-Rich Plasma Indole Markers by Direct-Matrix Derivatization Combined with LC-MS/MS in Patients with Neuroendocrine Tumors1 November 2019 | Clinical Chemistry, Vol. 65, No. 11Twin Derivatization Strategy for High-Coverage Quantification of Free Fatty Acids by Liquid Chromatography–Tandem Mass Spectrometry8 November 2017 | Analytical Chemistry, Vol. 89, No. 22Overview of Targeted Quantitation of Biomarkers and Its Applications14 July 2017Validation of highly sensitive simultaneous targeted and untargeted analysis of keto-steroids by Girard P derivatization and stable isotope dilution-liquid chromatography-high resolution mass spectrometrySteroids, Vol. 116Advances in bioanalytical techniques to measure steroid hormones in serumDeborah French24 May 2016 | Bioanalysis, Vol. 8, No. 11Chemical derivatization in bioanalysisHermes Licea Perez & Christopher A Evans3 November 2015 | Bioanalysis, Vol. 7, No. 19 Vol. 7, No. 19 STAY CONNECTED Metrics Downloaded 274 times History Published online 15 October 2015 Published in print October 2015 Information© Future Science LtdKeywordsanalytical chemistrychemical derivatizationclick chemistrylaser capture microdissectionliquid extraction surface analysisFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W2100079347 created "2016-06-24" @default.
- W2100079347 creator A5018473694 @default.
- W2100079347 creator A5082920391 @default.
- W2100079347 creator A5089181291 @default.
- W2100079347 date "2015-10-01" @default.
- W2100079347 modified "2023-09-25" @default.
- W2100079347 title "Chemical derivatization in LC–MS bioanalysis: current & future challenges" @default.
- W2100079347 cites W1554674919 @default.
- W2100079347 cites W1895896679 @default.
- W2100079347 cites W1965223660 @default.
- W2100079347 cites W1967544219 @default.
- W2100079347 cites W1970177377 @default.
- W2100079347 cites W1973119510 @default.
- W2100079347 cites W1977327813 @default.
- W2100079347 cites W1991464475 @default.
- W2100079347 cites W2009475667 @default.
- W2100079347 cites W2016285619 @default.
- W2100079347 cites W2016341282 @default.
- W2100079347 cites W2020841294 @default.
- W2100079347 cites W2028118607 @default.
- W2100079347 cites W2028905918 @default.
- W2100079347 cites W2034741032 @default.
- W2100079347 cites W2037446268 @default.
- W2100079347 cites W2043628067 @default.
- W2100079347 cites W2046531738 @default.
- W2100079347 cites W2062065424 @default.
- W2100079347 cites W2065325679 @default.
- W2100079347 cites W2095091292 @default.
- W2100079347 cites W2095216181 @default.
- W2100079347 cites W2113916926 @default.
- W2100079347 cites W2136817553 @default.
- W2100079347 cites W2141400573 @default.
- W2100079347 cites W2146902911 @default.
- W2100079347 cites W2148751896 @default.
- W2100079347 cites W2162586071 @default.
- W2100079347 cites W2331222676 @default.
- W2100079347 cites W2062467887 @default.
- W2100079347 doi "https://doi.org/10.4155/bio.15.177" @default.
- W2100079347 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26466805" @default.
- W2100079347 hasPublicationYear "2015" @default.
- W2100079347 type Work @default.
- W2100079347 sameAs 2100079347 @default.
- W2100079347 citedByCount "9" @default.
- W2100079347 countsByYear W21000793472015 @default.
- W2100079347 countsByYear W21000793472016 @default.
- W2100079347 countsByYear W21000793472017 @default.
- W2100079347 countsByYear W21000793472019 @default.
- W2100079347 countsByYear W21000793472020 @default.
- W2100079347 countsByYear W21000793472021 @default.
- W2100079347 crossrefType "journal-article" @default.
- W2100079347 hasAuthorship W2100079347A5018473694 @default.
- W2100079347 hasAuthorship W2100079347A5082920391 @default.
- W2100079347 hasAuthorship W2100079347A5089181291 @default.
- W2100079347 hasConcept C121332964 @default.
- W2100079347 hasConcept C137535248 @default.
- W2100079347 hasConcept C148043351 @default.
- W2100079347 hasConcept C162356407 @default.
- W2100079347 hasConcept C185592680 @default.
- W2100079347 hasConcept C2776923573 @default.
- W2100079347 hasConcept C43617362 @default.
- W2100079347 hasConcept C64489805 @default.
- W2100079347 hasConcept C97355855 @default.
- W2100079347 hasConceptScore W2100079347C121332964 @default.
- W2100079347 hasConceptScore W2100079347C137535248 @default.
- W2100079347 hasConceptScore W2100079347C148043351 @default.
- W2100079347 hasConceptScore W2100079347C162356407 @default.
- W2100079347 hasConceptScore W2100079347C185592680 @default.
- W2100079347 hasConceptScore W2100079347C2776923573 @default.
- W2100079347 hasConceptScore W2100079347C43617362 @default.
- W2100079347 hasConceptScore W2100079347C64489805 @default.
- W2100079347 hasConceptScore W2100079347C97355855 @default.
- W2100079347 hasIssue "19" @default.
- W2100079347 hasLocation W21000793471 @default.
- W2100079347 hasLocation W21000793472 @default.
- W2100079347 hasOpenAccess W2100079347 @default.
- W2100079347 hasPrimaryLocation W21000793471 @default.
- W2100079347 hasRelatedWork W1496297241 @default.
- W2100079347 hasRelatedWork W1987886540 @default.
- W2100079347 hasRelatedWork W2023604957 @default.
- W2100079347 hasRelatedWork W2073733503 @default.
- W2100079347 hasRelatedWork W2091930589 @default.
- W2100079347 hasRelatedWork W2164176383 @default.
- W2100079347 hasRelatedWork W2170779378 @default.
- W2100079347 hasRelatedWork W2916126509 @default.
- W2100079347 hasRelatedWork W4210379501 @default.
- W2100079347 hasRelatedWork W4288769142 @default.
- W2100079347 hasVolume "7" @default.
- W2100079347 isParatext "false" @default.
- W2100079347 isRetracted "false" @default.
- W2100079347 magId "2100079347" @default.
- W2100079347 workType "article" @default.