Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100091931> ?p ?o ?g. }
- W2100091931 endingPage "S8" @default.
- W2100091931 startingPage "S8" @default.
- W2100091931 abstract "Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers." @default.
- W2100091931 created "2016-06-24" @default.
- W2100091931 creator A5044722808 @default.
- W2100091931 creator A5068824804 @default.
- W2100091931 date "2013-01-01" @default.
- W2100091931 modified "2023-10-11" @default.
- W2100091931 title "Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method" @default.
- W2100091931 cites W1535422202 @default.
- W2100091931 cites W1597762634 @default.
- W2100091931 cites W1969723894 @default.
- W2100091931 cites W1970161521 @default.
- W2100091931 cites W1970454429 @default.
- W2100091931 cites W1976051941 @default.
- W2100091931 cites W1976998887 @default.
- W2100091931 cites W1977708375 @default.
- W2100091931 cites W1979591743 @default.
- W2100091931 cites W1983132551 @default.
- W2100091931 cites W1983443072 @default.
- W2100091931 cites W1987104859 @default.
- W2100091931 cites W1989680282 @default.
- W2100091931 cites W1995808589 @default.
- W2100091931 cites W1997507624 @default.
- W2100091931 cites W1998299443 @default.
- W2100091931 cites W2000359213 @default.
- W2100091931 cites W2004461664 @default.
- W2100091931 cites W2012364120 @default.
- W2100091931 cites W2012862185 @default.
- W2100091931 cites W2031340110 @default.
- W2100091931 cites W2033197339 @default.
- W2100091931 cites W2036016432 @default.
- W2100091931 cites W2036373080 @default.
- W2100091931 cites W2039425860 @default.
- W2100091931 cites W2046767590 @default.
- W2100091931 cites W2049269366 @default.
- W2100091931 cites W2049738344 @default.
- W2100091931 cites W2051827748 @default.
- W2100091931 cites W2053599146 @default.
- W2100091931 cites W2054549458 @default.
- W2100091931 cites W2056637556 @default.
- W2100091931 cites W2058206198 @default.
- W2100091931 cites W2066962978 @default.
- W2100091931 cites W2067763399 @default.
- W2100091931 cites W2072832294 @default.
- W2100091931 cites W2076600143 @default.
- W2100091931 cites W2079871896 @default.
- W2100091931 cites W2083544350 @default.
- W2100091931 cites W2093221728 @default.
- W2100091931 cites W2102099014 @default.
- W2100091931 cites W2102713507 @default.
- W2100091931 cites W2106648157 @default.
- W2100091931 cites W2107257584 @default.
- W2100091931 cites W2107696550 @default.
- W2100091931 cites W2112615307 @default.
- W2100091931 cites W2112959255 @default.
- W2100091931 cites W2115889893 @default.
- W2100091931 cites W2116901406 @default.
- W2100091931 cites W2119394534 @default.
- W2100091931 cites W2128736063 @default.
- W2100091931 cites W2128990851 @default.
- W2100091931 cites W2129472062 @default.
- W2100091931 cites W2132245907 @default.
- W2100091931 cites W2139183106 @default.
- W2100091931 cites W2139257751 @default.
- W2100091931 cites W2142506069 @default.
- W2100091931 cites W2152301430 @default.
- W2100091931 cites W2156790586 @default.
- W2100091931 cites W2157066636 @default.
- W2100091931 cites W2162166182 @default.
- W2100091931 cites W2164642200 @default.
- W2100091931 cites W2169138936 @default.
- W2100091931 cites W2219883856 @default.
- W2100091931 cites W3098919389 @default.
- W2100091931 cites W3105405267 @default.
- W2100091931 doi "https://doi.org/10.1186/1472-6807-13-s1-s8" @default.
- W2100091931 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3952944" @default.
- W2100091931 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24565158" @default.
- W2100091931 hasPublicationYear "2013" @default.
- W2100091931 type Work @default.
- W2100091931 sameAs 2100091931 @default.
- W2100091931 citedByCount "29" @default.
- W2100091931 countsByYear W21000919312013 @default.
- W2100091931 countsByYear W21000919312015 @default.
- W2100091931 countsByYear W21000919312016 @default.
- W2100091931 countsByYear W21000919312017 @default.
- W2100091931 countsByYear W21000919312018 @default.
- W2100091931 countsByYear W21000919312019 @default.
- W2100091931 countsByYear W21000919312020 @default.
- W2100091931 countsByYear W21000919312021 @default.
- W2100091931 countsByYear W21000919312022 @default.
- W2100091931 crossrefType "journal-article" @default.
- W2100091931 hasAuthorship W2100091931A5044722808 @default.
- W2100091931 hasAuthorship W2100091931A5068824804 @default.
- W2100091931 hasBestOaLocation W21000919311 @default.
- W2100091931 hasConcept C113174947 @default.
- W2100091931 hasConcept C134306372 @default.
- W2100091931 hasConcept C14036430 @default.
- W2100091931 hasConcept C147597530 @default.
- W2100091931 hasConcept C154945302 @default.