Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100346319> ?p ?o ?g. }
- W2100346319 abstract "The permeabilities of vesicular Stromboli basaltic glasses were determined using lattice Boltzmann (LB) simulations and laboratory measurements. Lattice Boltzmann simulations were performed to simulate flow through vesicular Stromboli basaltic glasses with porosities, {phi}, from 5% to 92%. The simulations and measurements provide a power law Darcian permeability-porosity relationship k(Phi) = c ({phi}){sup 5} with c = 2.35 x 10{sup -20} from LB simulations and 5.33 x 10{sup -21} from measurements, where k is in m{sup 2}. These permeabilities of vesiculated basalts are about 1 to 2 orders of magnitude higher than in rhyolitic and dacitic volcanic rocks with the same porosity; this difference is attributed to a higher bubble interconnectivity and larger bubble apertures in our basaltic samples. The Darcian flow permeability k{sub 1} (m{sup 2}) and non-Darcian flow permeability k{sub 2} (m) are highly dependent on bubble size, D, and porosity with k{sub 1} = 7.66 x 10{sup -17}[D{sup 2{phi}3}/(1 - {phi}){sup 2}] and k{sub 2} = 2.78 x 10{sup -9}[D{phi}{sup 3}/(1 - {phi})]. Samples with power law bubble size distributions can produce higher permeabilities than samples with exponential bubble size distributions. The Darcian and non-Darcian flow regimes are delineated, demonstrating that the Darcian flow occurs at the Forchheimermore » number, Fo, below 0.2-1, and the transitional flow (Forchheimer flow) occurs in the Forchheimer number range 1 to 10. The correlations between friction factor, f{sub k}, and Fo are constrained by the permeability measurements, and are in good agreement with simulations: f{sub k} = (1.11 {+-} 0.17) + [(0.66 {+-} 0.39)/Fo] (measurements) and f{sub k} = (0.59 {+-} 0.49) + [(1.0 {+-} 0.01)/Fo] (LB simulations). Our results show that f{sub k} depends on k{sub 2}, pore size, and pore geometry at small Fo and tends to be a constant at large Fo. The f{sub k} - Fo correlations imply a gradual transition from Darcian to non-Darcian flow, rather than an abrupt change. Modeling the relationship between permeability created by water exsolution and depth suggests that significant increases of permeability occur at depths of {approx}100-2000 m for melts with initial water concentrations of 1-4 wt %. At these depths, for gas flow through vesicular magma with a velocity 0.1-1 m s{sup -1}, Fo is in the range {approx}0.5-47, corresponding to the transitional flow regime. For a gas flow with a velocity over {approx}10 m s{sup -1}, Fo can attain values well above the transition flow regime. Our results imply that transitional flow or turbulent flow probably prevails in vesicular magma.« less" @default.
- W2100346319 created "2016-06-24" @default.
- W2100346319 creator A5020022149 @default.
- W2100346319 creator A5034036927 @default.
- W2100346319 creator A5059442441 @default.
- W2100346319 date "2010-07-07" @default.
- W2100346319 modified "2023-09-26" @default.
- W2100346319 title "Permeability of vesicular Stromboli basaltic glass: Lattice Boltzmann simulations and laboratory measurements" @default.
- W2100346319 cites W1614071512 @default.
- W2100346319 cites W1655025609 @default.
- W2100346319 cites W1855587930 @default.
- W2100346319 cites W1971779117 @default.
- W2100346319 cites W1972275555 @default.
- W2100346319 cites W1975633231 @default.
- W2100346319 cites W1981136290 @default.
- W2100346319 cites W1982059564 @default.
- W2100346319 cites W1985635555 @default.
- W2100346319 cites W1985806023 @default.
- W2100346319 cites W1988847099 @default.
- W2100346319 cites W1994611591 @default.
- W2100346319 cites W1995099307 @default.
- W2100346319 cites W1997828154 @default.
- W2100346319 cites W2000523689 @default.
- W2100346319 cites W2001266558 @default.
- W2100346319 cites W2003510744 @default.
- W2100346319 cites W2006238808 @default.
- W2100346319 cites W2013544528 @default.
- W2100346319 cites W2021842767 @default.
- W2100346319 cites W2022811445 @default.
- W2100346319 cites W2029038146 @default.
- W2100346319 cites W2031437911 @default.
- W2100346319 cites W2033230986 @default.
- W2100346319 cites W2039730779 @default.
- W2100346319 cites W2041498130 @default.
- W2100346319 cites W2045033271 @default.
- W2100346319 cites W2045998468 @default.
- W2100346319 cites W2046083065 @default.
- W2100346319 cites W2049079106 @default.
- W2100346319 cites W2049268816 @default.
- W2100346319 cites W2056039428 @default.
- W2100346319 cites W2058326415 @default.
- W2100346319 cites W2060310692 @default.
- W2100346319 cites W2066242884 @default.
- W2100346319 cites W2090776051 @default.
- W2100346319 cites W2098772492 @default.
- W2100346319 cites W2100662196 @default.
- W2100346319 cites W2103501664 @default.
- W2100346319 cites W2105026282 @default.
- W2100346319 cites W2130680196 @default.
- W2100346319 cites W2136246205 @default.
- W2100346319 cites W2138867676 @default.
- W2100346319 cites W2145853140 @default.
- W2100346319 cites W2148864469 @default.
- W2100346319 cites W2150490400 @default.
- W2100346319 cites W2162335076 @default.
- W2100346319 cites W2167993217 @default.
- W2100346319 cites W2171434698 @default.
- W2100346319 cites W2226797612 @default.
- W2100346319 doi "https://doi.org/10.1029/2009jb007047" @default.
- W2100346319 hasPublicationYear "2010" @default.
- W2100346319 type Work @default.
- W2100346319 sameAs 2100346319 @default.
- W2100346319 citedByCount "29" @default.
- W2100346319 countsByYear W21003463192012 @default.
- W2100346319 countsByYear W21003463192013 @default.
- W2100346319 countsByYear W21003463192014 @default.
- W2100346319 countsByYear W21003463192015 @default.
- W2100346319 countsByYear W21003463192016 @default.
- W2100346319 countsByYear W21003463192017 @default.
- W2100346319 countsByYear W21003463192018 @default.
- W2100346319 countsByYear W21003463192019 @default.
- W2100346319 countsByYear W21003463192020 @default.
- W2100346319 countsByYear W21003463192021 @default.
- W2100346319 countsByYear W21003463192022 @default.
- W2100346319 countsByYear W21003463192023 @default.
- W2100346319 crossrefType "journal-article" @default.
- W2100346319 hasAuthorship W2100346319A5020022149 @default.
- W2100346319 hasAuthorship W2100346319A5034036927 @default.
- W2100346319 hasAuthorship W2100346319A5059442441 @default.
- W2100346319 hasConcept C120882062 @default.
- W2100346319 hasConcept C121332964 @default.
- W2100346319 hasConcept C127313418 @default.
- W2100346319 hasConcept C161509811 @default.
- W2100346319 hasConcept C17409809 @default.
- W2100346319 hasConcept C185592680 @default.
- W2100346319 hasConcept C21821499 @default.
- W2100346319 hasConcept C41625074 @default.
- W2100346319 hasConcept C55493867 @default.
- W2100346319 hasConcept C57879066 @default.
- W2100346319 hasConcept C8058405 @default.
- W2100346319 hasConceptScore W2100346319C120882062 @default.
- W2100346319 hasConceptScore W2100346319C121332964 @default.
- W2100346319 hasConceptScore W2100346319C127313418 @default.
- W2100346319 hasConceptScore W2100346319C161509811 @default.
- W2100346319 hasConceptScore W2100346319C17409809 @default.
- W2100346319 hasConceptScore W2100346319C185592680 @default.
- W2100346319 hasConceptScore W2100346319C21821499 @default.
- W2100346319 hasConceptScore W2100346319C41625074 @default.
- W2100346319 hasConceptScore W2100346319C55493867 @default.
- W2100346319 hasConceptScore W2100346319C57879066 @default.