Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100420753> ?p ?o ?g. }
- W2100420753 endingPage "1221" @default.
- W2100420753 startingPage "1214" @default.
- W2100420753 abstract "Background The aim of this study was to investigate the incremental value of global longitudinal strain (GLS) by automated function imaging in respect to wall motion (WM) for the detection of coronary artery disease (CAD) during dipyridamole stress echocardiography. Methods Fifty-two patients (mean age, 65.3 ± 8.7 years; 22 men) underwent dipyridamole stress echocardiography followed by coronary angiography within 1 week. Diagnostic accuracy for the identification of single-vessel CAD was evaluated for WM and GLS. The study population was divided into two groups according to coronary angiographic findings: those with CAD (n = 38; mean age, 67.2 ± 5.9 years; 19 men) and those without CAD (n = 14; mean age, 63.3 ± 6.4 years; three men). Results A trend toward lower resting GLS values was found in patients with CAD than in those without (−18.7 ± 2.2% vs −20 ± 2.8%, P = .061). In patients without CAD, GLS progressively increased up to peak dose (from −20 ± 2.8% at rest to −20.7 ± 1.9% at low dose, P = .045; from −20.7 ± 1.9% at low dose to −21.5 ± 3.1% at peak dose, P = .032), whereas in patients with CAD, an increase of GLS from rest to low dose (from −18.7 ± 2.2% to −19.2 ± 3.9%, P = .046) followed by a decrease from low to peak dose (from −19.2 ± 3.9% to −17.5 ± 2.4%, P = .007) was observed. In addition, with regard to diagnostic accuracy in detecting CAD, WM yielded sensitivity of 44%, specificity of 55%, positive predictive value of 73%, and negative predictive value of 26%, whereas GLS, alternatively evaluated as the difference between peak dose and resting values or between peak and low-dose values, provided sensitivity of 61%, specificity of 90%, positive predictive value of 94%, and negative predictive value of 47% (respectively, P = .020, P = .001, P = .023, and P = .031, all vs WM) and sensitivity of 84%, specificity of 92%, positive predictive value of 96%, and negative predictive value of 68% (respectively, P < .001, P < .001, P = .001, P < .001, all vs WM). Conclusions GLS analysis, particularly performed by comparing peak-dose with low-dose values, improves the accuracy of dipyridamole stress echocardiography in the detection of single-vessel CAD compared with the sole assessment of WM changes. The aim of this study was to investigate the incremental value of global longitudinal strain (GLS) by automated function imaging in respect to wall motion (WM) for the detection of coronary artery disease (CAD) during dipyridamole stress echocardiography. Fifty-two patients (mean age, 65.3 ± 8.7 years; 22 men) underwent dipyridamole stress echocardiography followed by coronary angiography within 1 week. Diagnostic accuracy for the identification of single-vessel CAD was evaluated for WM and GLS. The study population was divided into two groups according to coronary angiographic findings: those with CAD (n = 38; mean age, 67.2 ± 5.9 years; 19 men) and those without CAD (n = 14; mean age, 63.3 ± 6.4 years; three men). A trend toward lower resting GLS values was found in patients with CAD than in those without (−18.7 ± 2.2% vs −20 ± 2.8%, P = .061). In patients without CAD, GLS progressively increased up to peak dose (from −20 ± 2.8% at rest to −20.7 ± 1.9% at low dose, P = .045; from −20.7 ± 1.9% at low dose to −21.5 ± 3.1% at peak dose, P = .032), whereas in patients with CAD, an increase of GLS from rest to low dose (from −18.7 ± 2.2% to −19.2 ± 3.9%, P = .046) followed by a decrease from low to peak dose (from −19.2 ± 3.9% to −17.5 ± 2.4%, P = .007) was observed. In addition, with regard to diagnostic accuracy in detecting CAD, WM yielded sensitivity of 44%, specificity of 55%, positive predictive value of 73%, and negative predictive value of 26%, whereas GLS, alternatively evaluated as the difference between peak dose and resting values or between peak and low-dose values, provided sensitivity of 61%, specificity of 90%, positive predictive value of 94%, and negative predictive value of 47% (respectively, P = .020, P = .001, P = .023, and P = .031, all vs WM) and sensitivity of 84%, specificity of 92%, positive predictive value of 96%, and negative predictive value of 68% (respectively, P < .001, P < .001, P = .001, P < .001, all vs WM). GLS analysis, particularly performed by comparing peak-dose with low-dose values, improves the accuracy of dipyridamole stress echocardiography in the detection of single-vessel CAD compared with the sole assessment of WM changes." @default.
- W2100420753 created "2016-06-24" @default.
- W2100420753 creator A5010144434 @default.
- W2100420753 creator A5027753670 @default.
- W2100420753 creator A5029561246 @default.
- W2100420753 creator A5034588600 @default.
- W2100420753 creator A5039368988 @default.
- W2100420753 creator A5053609333 @default.
- W2100420753 creator A5053611466 @default.
- W2100420753 creator A5059319055 @default.
- W2100420753 creator A5082469987 @default.
- W2100420753 creator A5084534858 @default.
- W2100420753 date "2015-10-01" @default.
- W2100420753 modified "2023-10-18" @default.
- W2100420753 title "Longitudinal Strain by Automated Function Imaging Detects Single-Vessel Coronary Artery Disease in Patients Undergoing Dipyridamole Stress Echocardiography" @default.
- W2100420753 cites W16523066 @default.
- W2100420753 cites W1918354584 @default.
- W2100420753 cites W1970576900 @default.
- W2100420753 cites W1972588328 @default.
- W2100420753 cites W1979333773 @default.
- W2100420753 cites W1983734203 @default.
- W2100420753 cites W1983759500 @default.
- W2100420753 cites W1989657058 @default.
- W2100420753 cites W1989680466 @default.
- W2100420753 cites W2001831868 @default.
- W2100420753 cites W2006308176 @default.
- W2100420753 cites W2024841792 @default.
- W2100420753 cites W2026409624 @default.
- W2100420753 cites W2027788730 @default.
- W2100420753 cites W2041437149 @default.
- W2100420753 cites W2043719764 @default.
- W2100420753 cites W2048781124 @default.
- W2100420753 cites W2054649276 @default.
- W2100420753 cites W2055566972 @default.
- W2100420753 cites W2060576687 @default.
- W2100420753 cites W2064592377 @default.
- W2100420753 cites W2067643330 @default.
- W2100420753 cites W2102290758 @default.
- W2100420753 cites W2121181685 @default.
- W2100420753 cites W2123987428 @default.
- W2100420753 cites W2124624517 @default.
- W2100420753 cites W2131195601 @default.
- W2100420753 cites W2162483247 @default.
- W2100420753 cites W2179377441 @default.
- W2100420753 cites W2287383683 @default.
- W2100420753 doi "https://doi.org/10.1016/j.echo.2015.06.001" @default.
- W2100420753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26165447" @default.
- W2100420753 hasPublicationYear "2015" @default.
- W2100420753 type Work @default.
- W2100420753 sameAs 2100420753 @default.
- W2100420753 citedByCount "24" @default.
- W2100420753 countsByYear W21004207532016 @default.
- W2100420753 countsByYear W21004207532017 @default.
- W2100420753 countsByYear W21004207532018 @default.
- W2100420753 countsByYear W21004207532019 @default.
- W2100420753 countsByYear W21004207532020 @default.
- W2100420753 countsByYear W21004207532021 @default.
- W2100420753 countsByYear W21004207532022 @default.
- W2100420753 countsByYear W21004207532023 @default.
- W2100420753 crossrefType "journal-article" @default.
- W2100420753 hasAuthorship W2100420753A5010144434 @default.
- W2100420753 hasAuthorship W2100420753A5027753670 @default.
- W2100420753 hasAuthorship W2100420753A5029561246 @default.
- W2100420753 hasAuthorship W2100420753A5034588600 @default.
- W2100420753 hasAuthorship W2100420753A5039368988 @default.
- W2100420753 hasAuthorship W2100420753A5053609333 @default.
- W2100420753 hasAuthorship W2100420753A5053611466 @default.
- W2100420753 hasAuthorship W2100420753A5059319055 @default.
- W2100420753 hasAuthorship W2100420753A5082469987 @default.
- W2100420753 hasAuthorship W2100420753A5084534858 @default.
- W2100420753 hasConcept C126322002 @default.
- W2100420753 hasConcept C126838900 @default.
- W2100420753 hasConcept C127413603 @default.
- W2100420753 hasConcept C164705383 @default.
- W2100420753 hasConcept C194789388 @default.
- W2100420753 hasConcept C199360897 @default.
- W2100420753 hasConcept C199639397 @default.
- W2100420753 hasConcept C2776890861 @default.
- W2100420753 hasConcept C2778213512 @default.
- W2100420753 hasConcept C2908647359 @default.
- W2100420753 hasConcept C2909814191 @default.
- W2100420753 hasConcept C2989005 @default.
- W2100420753 hasConcept C3019004856 @default.
- W2100420753 hasConcept C41008148 @default.
- W2100420753 hasConcept C500558357 @default.
- W2100420753 hasConcept C71924100 @default.
- W2100420753 hasConcept C7515471 @default.
- W2100420753 hasConcept C99454951 @default.
- W2100420753 hasConceptScore W2100420753C126322002 @default.
- W2100420753 hasConceptScore W2100420753C126838900 @default.
- W2100420753 hasConceptScore W2100420753C127413603 @default.
- W2100420753 hasConceptScore W2100420753C164705383 @default.
- W2100420753 hasConceptScore W2100420753C194789388 @default.
- W2100420753 hasConceptScore W2100420753C199360897 @default.
- W2100420753 hasConceptScore W2100420753C199639397 @default.
- W2100420753 hasConceptScore W2100420753C2776890861 @default.
- W2100420753 hasConceptScore W2100420753C2778213512 @default.
- W2100420753 hasConceptScore W2100420753C2908647359 @default.