Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100450149> ?p ?o ?g. }
- W2100450149 endingPage "1508" @default.
- W2100450149 startingPage "1496" @default.
- W2100450149 abstract "Conjugated organic molecules are interesting materials because of their structures and their electronic, electrical, magnetic, optical, biological, and chemical properties. However, researchers continue to face great challenges in the construction of well-defined organic compounds that aggregate into larger molecular materials such as nanowires, tubes, rods, particles, walls, films, and other structural arrays. Such nanoscale materials could serve as direct device components. In this Account, we describe our recent progress in the construction of nanostructures formed through the aggregation of organic conjugated molecules and in the investigation of the optical, electrical, and electronic properties that depend on the size or morphology of these nanostructures. We have designed and synthesized functional conjugated organic molecules with structural features that favor assembly into aggregate nanostructures via weak intermolecular interactions. These large-area ordered molecular aggregate nanostructures are based on a variety of simpler structures such as fullerenes, perylenes, anthracenes, porphyrins, polydiacetylenes, and their derivatives. We have developed new methods to construct these larger structures including organic vapor−solid phase reaction, natural growth, association via self-polymerization and self-organization, and a combination of self-assembly and electrochemical growth. These methods are both facile and reliable, allowing us to produce ordered and aligned aggregate nanostructures, such as large-area arrays of nanowires, nanorods, and nanotubes. In addition, we can synthesize nanoscale materials with controlled properties. Large-area ordered aggregate nanostructures exhibit interesting electrical, optical, and optoelectronic properties. We also describe the preparation of large-area aggregate nanostructures of charge transfer (CT) complexes using an organic solid-phase reaction technique. By this process, we can finely control the morphologies and sizes of the organic nanostructures on wires, tubes, and rods. Through field emission studies, we demonstrate that the films made from arrays of CT complexes are a new kind of cathode materials, and we systematically investigate the effects of size and morphology on electrical properties. Low-dimension organic/inorganic hybrid nanostructures can be used to produce new classes of organic/inorganic solid materials with properties that are not observed in either the individual nanosize components or the larger bulk materials. We developed the combined self-assembly and templating technique to construct various nanostructured arrays of organic and inorganic semiconductors. The combination of hybrid aggregate nanostructures displays distinct optical and electrical properties compared with their individual components. Such hybrid structures show promise for applications in electronics, optics, photovoltaic cells, and biology. In this Account, we aim to provide an intuition for understanding the structure−function relationships in organic molecular materials. Such principles could lead to new design concepts for the development of new nonhazardous, high-performance molecular materials on aggregate nanostructures." @default.
- W2100450149 created "2016-06-24" @default.
- W2100450149 creator A5023143758 @default.
- W2100450149 creator A5036319498 @default.
- W2100450149 creator A5036640081 @default.
- W2100450149 creator A5074134616 @default.
- W2100450149 date "2010-10-13" @default.
- W2100450149 modified "2023-10-02" @default.
- W2100450149 title "Aggregate Nanostructures of Organic Molecular Materials" @default.
- W2100450149 cites W1965712269 @default.
- W2100450149 cites W1967595184 @default.
- W2100450149 cites W1967883617 @default.
- W2100450149 cites W1985967241 @default.
- W2100450149 cites W1990774389 @default.
- W2100450149 cites W2003571536 @default.
- W2100450149 cites W2004664828 @default.
- W2100450149 cites W2008890800 @default.
- W2100450149 cites W2010083671 @default.
- W2100450149 cites W2015692463 @default.
- W2100450149 cites W2024269331 @default.
- W2100450149 cites W2025399509 @default.
- W2100450149 cites W2026313962 @default.
- W2100450149 cites W2033783756 @default.
- W2100450149 cites W2036790472 @default.
- W2100450149 cites W2037793977 @default.
- W2100450149 cites W2040365582 @default.
- W2100450149 cites W2047774429 @default.
- W2100450149 cites W2052599493 @default.
- W2100450149 cites W2059523404 @default.
- W2100450149 cites W2064687410 @default.
- W2100450149 cites W2069119855 @default.
- W2100450149 cites W2072034648 @default.
- W2100450149 cites W2073500340 @default.
- W2100450149 cites W2073766658 @default.
- W2100450149 cites W2075278484 @default.
- W2100450149 cites W2086020784 @default.
- W2100450149 cites W2090142111 @default.
- W2100450149 cites W2093238774 @default.
- W2100450149 cites W2098218275 @default.
- W2100450149 cites W2099923180 @default.
- W2100450149 cites W2116018521 @default.
- W2100450149 cites W2116761237 @default.
- W2100450149 cites W2123311257 @default.
- W2100450149 cites W2137970623 @default.
- W2100450149 cites W2141517543 @default.
- W2100450149 cites W2155068834 @default.
- W2100450149 cites W2336038860 @default.
- W2100450149 cites W4235099788 @default.
- W2100450149 cites W4379767020 @default.
- W2100450149 doi "https://doi.org/10.1021/ar100084y" @default.
- W2100450149 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20942417" @default.
- W2100450149 hasPublicationYear "2010" @default.
- W2100450149 type Work @default.
- W2100450149 sameAs 2100450149 @default.
- W2100450149 citedByCount "356" @default.
- W2100450149 countsByYear W21004501492012 @default.
- W2100450149 countsByYear W21004501492013 @default.
- W2100450149 countsByYear W21004501492014 @default.
- W2100450149 countsByYear W21004501492015 @default.
- W2100450149 countsByYear W21004501492016 @default.
- W2100450149 countsByYear W21004501492017 @default.
- W2100450149 countsByYear W21004501492018 @default.
- W2100450149 countsByYear W21004501492019 @default.
- W2100450149 countsByYear W21004501492020 @default.
- W2100450149 countsByYear W21004501492021 @default.
- W2100450149 countsByYear W21004501492022 @default.
- W2100450149 countsByYear W21004501492023 @default.
- W2100450149 crossrefType "journal-article" @default.
- W2100450149 hasAuthorship W2100450149A5023143758 @default.
- W2100450149 hasAuthorship W2100450149A5036319498 @default.
- W2100450149 hasAuthorship W2100450149A5036640081 @default.
- W2100450149 hasAuthorship W2100450149A5074134616 @default.
- W2100450149 hasConcept C112613896 @default.
- W2100450149 hasConcept C126201875 @default.
- W2100450149 hasConcept C159985019 @default.
- W2100450149 hasConcept C162862793 @default.
- W2100450149 hasConcept C171250308 @default.
- W2100450149 hasConcept C178790620 @default.
- W2100450149 hasConcept C185592680 @default.
- W2100450149 hasConcept C186187911 @default.
- W2100450149 hasConcept C192562407 @default.
- W2100450149 hasConcept C32909587 @default.
- W2100450149 hasConcept C44228677 @default.
- W2100450149 hasConcept C521977710 @default.
- W2100450149 hasConcept C74214498 @default.
- W2100450149 hasConceptScore W2100450149C112613896 @default.
- W2100450149 hasConceptScore W2100450149C126201875 @default.
- W2100450149 hasConceptScore W2100450149C159985019 @default.
- W2100450149 hasConceptScore W2100450149C162862793 @default.
- W2100450149 hasConceptScore W2100450149C171250308 @default.
- W2100450149 hasConceptScore W2100450149C178790620 @default.
- W2100450149 hasConceptScore W2100450149C185592680 @default.
- W2100450149 hasConceptScore W2100450149C186187911 @default.
- W2100450149 hasConceptScore W2100450149C192562407 @default.
- W2100450149 hasConceptScore W2100450149C32909587 @default.
- W2100450149 hasConceptScore W2100450149C44228677 @default.
- W2100450149 hasConceptScore W2100450149C521977710 @default.
- W2100450149 hasConceptScore W2100450149C74214498 @default.