Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100564583> ?p ?o ?g. }
- W2100564583 endingPage "717" @default.
- W2100564583 startingPage "695" @default.
- W2100564583 abstract "This article describes the extension of the arbitrary high-order Discontinuous Galerkin (ADER-DG) method to treat locally varying polynomial degress of the basis functions, so-called p-adaptivity, as well as locally varying time steps that may be different from one element to another. The p-adaptive version of the scheme is useful in complex 3-D models with small-scale features which have to be meshed with reasonably small elements to capture the necessary geometrical details of interest. Using a constant high polynomial degree of the basis functions in the whole computational domain can lead to an unreasonably high CPU effort since good spatial resolution at the surface may be already obtained by the fine mesh. Therefore, it can be more adequate in some cases to use a lower order method in the small elements to reduce the CPU effort without loosing much accuracy. To further increase computational efficiency, we present a new local time stepping (LTS) algorithm. For usual explicit time stepping schemes the element with the smallest time step resulting from the stability criterion of the method will dictate its time step to all the other elements of the computational domain. In contrast, by using local time stepping, each element can use its optimal time step given by the local stability condition. Our proposed LTS algorithm for ADER-DG is very general and does not need any temporal synchronization between the elements. Due to the ADER approach, accurate time interpolation is automatically provided at the element interfaces such that the computational overhead is very small and such that the method maintains the uniform high order of accuracy in space and time as in the usual ADER-DG schemes with a globally constant time step. However, the LTS ADER-DG method is computationally much more efficient for problems with strongly varying element size or material parameters since it allows to reduce the total number of element updates considerably. This holds especially for unstructured tetrahedral meshes that contain strongly degenerate elements, so-called slivers. We show numerical convergence results and CPU times for LTS ADER-DG schemes up to sixth order in space and time on irregular tetrahedral meshes containing elements of very different size and also on tetrahedral meshes containing slivers. Further validation of the algorithm is provided by results obtained for the layer over half-space (LOH.1) benchmark problem proposed by the Pacific Earthquake Engineering Research Center. Finally, we present a realistic application on earthquake modelling and ground motion prediction for the alpine valley of Grenoble." @default.
- W2100564583 created "2016-06-24" @default.
- W2100564583 creator A5030446403 @default.
- W2100564583 creator A5051559583 @default.
- W2100564583 creator A5073614233 @default.
- W2100564583 date "2007-11-01" @default.
- W2100564583 modified "2023-09-23" @default.
- W2100564583 title "An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and<i>p</i>-adaptivity" @default.
- W2100564583 cites W1513760541 @default.
- W2100564583 cites W1555627060 @default.
- W2100564583 cites W170878819 @default.
- W2100564583 cites W191599861 @default.
- W2100564583 cites W1985883290 @default.
- W2100564583 cites W2004951603 @default.
- W2100564583 cites W2024331605 @default.
- W2100564583 cites W2031155326 @default.
- W2100564583 cites W2044653767 @default.
- W2100564583 cites W2047391773 @default.
- W2100564583 cites W2086118501 @default.
- W2100564583 cites W2096692833 @default.
- W2100564583 cites W2098267405 @default.
- W2100564583 cites W2104498626 @default.
- W2100564583 cites W2119821054 @default.
- W2100564583 cites W2127563055 @default.
- W2100564583 cites W2138568701 @default.
- W2100564583 cites W2148631859 @default.
- W2100564583 cites W2149697434 @default.
- W2100564583 cites W2156971883 @default.
- W2100564583 cites W2157430242 @default.
- W2100564583 cites W2196188798 @default.
- W2100564583 cites W2293898602 @default.
- W2100564583 cites W2318308072 @default.
- W2100564583 cites W4214751139 @default.
- W2100564583 cites W4231590294 @default.
- W2100564583 cites W4238655316 @default.
- W2100564583 doi "https://doi.org/10.1111/j.1365-246x.2007.03427.x" @default.
- W2100564583 hasPublicationYear "2007" @default.
- W2100564583 type Work @default.
- W2100564583 sameAs 2100564583 @default.
- W2100564583 citedByCount "228" @default.
- W2100564583 countsByYear W21005645832012 @default.
- W2100564583 countsByYear W21005645832013 @default.
- W2100564583 countsByYear W21005645832014 @default.
- W2100564583 countsByYear W21005645832015 @default.
- W2100564583 countsByYear W21005645832016 @default.
- W2100564583 countsByYear W21005645832017 @default.
- W2100564583 countsByYear W21005645832018 @default.
- W2100564583 countsByYear W21005645832019 @default.
- W2100564583 countsByYear W21005645832020 @default.
- W2100564583 countsByYear W21005645832021 @default.
- W2100564583 countsByYear W21005645832022 @default.
- W2100564583 countsByYear W21005645832023 @default.
- W2100564583 crossrefType "journal-article" @default.
- W2100564583 hasAuthorship W2100564583A5030446403 @default.
- W2100564583 hasAuthorship W2100564583A5051559583 @default.
- W2100564583 hasAuthorship W2100564583A5073614233 @default.
- W2100564583 hasBestOaLocation W21005645831 @default.
- W2100564583 hasConcept C103824480 @default.
- W2100564583 hasConcept C111919701 @default.
- W2100564583 hasConcept C112972136 @default.
- W2100564583 hasConcept C11413529 @default.
- W2100564583 hasConcept C119857082 @default.
- W2100564583 hasConcept C121332964 @default.
- W2100564583 hasConcept C121684516 @default.
- W2100564583 hasConcept C12426560 @default.
- W2100564583 hasConcept C134306372 @default.
- W2100564583 hasConcept C135628077 @default.
- W2100564583 hasConcept C137800194 @default.
- W2100564583 hasConcept C186899397 @default.
- W2100564583 hasConcept C24890656 @default.
- W2100564583 hasConcept C2524010 @default.
- W2100564583 hasConcept C25878781 @default.
- W2100564583 hasConcept C2775997480 @default.
- W2100564583 hasConcept C2779960059 @default.
- W2100564583 hasConcept C28826006 @default.
- W2100564583 hasConcept C311688 @default.
- W2100564583 hasConcept C31487907 @default.
- W2100564583 hasConcept C31972630 @default.
- W2100564583 hasConcept C33923547 @default.
- W2100564583 hasConcept C41008148 @default.
- W2100564583 hasConcept C502989409 @default.
- W2100564583 hasConcept C5917680 @default.
- W2100564583 hasConcept C90119067 @default.
- W2100564583 hasConcept C92244383 @default.
- W2100564583 hasConcept C97355855 @default.
- W2100564583 hasConceptScore W2100564583C103824480 @default.
- W2100564583 hasConceptScore W2100564583C111919701 @default.
- W2100564583 hasConceptScore W2100564583C112972136 @default.
- W2100564583 hasConceptScore W2100564583C11413529 @default.
- W2100564583 hasConceptScore W2100564583C119857082 @default.
- W2100564583 hasConceptScore W2100564583C121332964 @default.
- W2100564583 hasConceptScore W2100564583C121684516 @default.
- W2100564583 hasConceptScore W2100564583C12426560 @default.
- W2100564583 hasConceptScore W2100564583C134306372 @default.
- W2100564583 hasConceptScore W2100564583C135628077 @default.
- W2100564583 hasConceptScore W2100564583C137800194 @default.
- W2100564583 hasConceptScore W2100564583C186899397 @default.
- W2100564583 hasConceptScore W2100564583C24890656 @default.