Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100607681> ?p ?o ?g. }
- W2100607681 endingPage "480" @default.
- W2100607681 startingPage "480" @default.
- W2100607681 abstract "The authors propose a new approach for the adaptive identification of sparse systems. This approach improves on the recursive least squares (RLS) algorithm by adding a sparsity inducing weighted 1 norm penalty to the RLS cost function. Subgradient analysis is utilised to develop the recursive update equations for the calculation of the optimum system estimate, which minimises the regularised cost function. Two new algorithms are introduced by considering two different weighting scenarios for the 1 norm penalty. These new 1 relaxation-based RLS algorithms emphasise sparsity during the adaptive filtering process, and they allow for faster convergence than standard RLS when the system under consideration is sparse. The authors test the performance of the novel algorithms and compare it with standard RLS and other adaptive algorithms for sparse system identification." @default.
- W2100607681 created "2016-06-24" @default.
- W2100607681 creator A5047214353 @default.
- W2100607681 date "2011-01-01" @default.
- W2100607681 modified "2023-10-16" @default.
- W2100607681 title "Sparsity regularised recursive least squares adaptive filtering" @default.
- W2100607681 cites W1986931325 @default.
- W2100607681 cites W2099464104 @default.
- W2100607681 cites W2107861471 @default.
- W2100607681 cites W2108731329 @default.
- W2100607681 cites W2110505738 @default.
- W2100607681 cites W2115671189 @default.
- W2100607681 cites W2119862467 @default.
- W2100607681 cites W2141583550 @default.
- W2100607681 cites W2167188281 @default.
- W2100607681 cites W3099579977 @default.
- W2100607681 cites W3139847728 @default.
- W2100607681 doi "https://doi.org/10.1049/iet-spr.2010.0083" @default.
- W2100607681 hasPublicationYear "2011" @default.
- W2100607681 type Work @default.
- W2100607681 sameAs 2100607681 @default.
- W2100607681 citedByCount "50" @default.
- W2100607681 countsByYear W21006076812012 @default.
- W2100607681 countsByYear W21006076812013 @default.
- W2100607681 countsByYear W21006076812014 @default.
- W2100607681 countsByYear W21006076812015 @default.
- W2100607681 countsByYear W21006076812016 @default.
- W2100607681 countsByYear W21006076812017 @default.
- W2100607681 countsByYear W21006076812018 @default.
- W2100607681 countsByYear W21006076812019 @default.
- W2100607681 countsByYear W21006076812020 @default.
- W2100607681 countsByYear W21006076812021 @default.
- W2100607681 countsByYear W21006076812022 @default.
- W2100607681 countsByYear W21006076812023 @default.
- W2100607681 crossrefType "journal-article" @default.
- W2100607681 hasAuthorship W2100607681A5047214353 @default.
- W2100607681 hasConcept C102248274 @default.
- W2100607681 hasConcept C105795698 @default.
- W2100607681 hasConcept C11413529 @default.
- W2100607681 hasConcept C119247159 @default.
- W2100607681 hasConcept C124101348 @default.
- W2100607681 hasConcept C126255220 @default.
- W2100607681 hasConcept C126838900 @default.
- W2100607681 hasConcept C145249878 @default.
- W2100607681 hasConcept C15744967 @default.
- W2100607681 hasConcept C158968445 @default.
- W2100607681 hasConcept C162324750 @default.
- W2100607681 hasConcept C17744445 @default.
- W2100607681 hasConcept C183115368 @default.
- W2100607681 hasConcept C185429906 @default.
- W2100607681 hasConcept C191795146 @default.
- W2100607681 hasConcept C199539241 @default.
- W2100607681 hasConcept C2776029896 @default.
- W2100607681 hasConcept C2777303404 @default.
- W2100607681 hasConcept C2780009758 @default.
- W2100607681 hasConcept C33923547 @default.
- W2100607681 hasConcept C41008148 @default.
- W2100607681 hasConcept C50522688 @default.
- W2100607681 hasConcept C6180225 @default.
- W2100607681 hasConcept C71924100 @default.
- W2100607681 hasConcept C77805123 @default.
- W2100607681 hasConcept C9936470 @default.
- W2100607681 hasConceptScore W2100607681C102248274 @default.
- W2100607681 hasConceptScore W2100607681C105795698 @default.
- W2100607681 hasConceptScore W2100607681C11413529 @default.
- W2100607681 hasConceptScore W2100607681C119247159 @default.
- W2100607681 hasConceptScore W2100607681C124101348 @default.
- W2100607681 hasConceptScore W2100607681C126255220 @default.
- W2100607681 hasConceptScore W2100607681C126838900 @default.
- W2100607681 hasConceptScore W2100607681C145249878 @default.
- W2100607681 hasConceptScore W2100607681C15744967 @default.
- W2100607681 hasConceptScore W2100607681C158968445 @default.
- W2100607681 hasConceptScore W2100607681C162324750 @default.
- W2100607681 hasConceptScore W2100607681C17744445 @default.
- W2100607681 hasConceptScore W2100607681C183115368 @default.
- W2100607681 hasConceptScore W2100607681C185429906 @default.
- W2100607681 hasConceptScore W2100607681C191795146 @default.
- W2100607681 hasConceptScore W2100607681C199539241 @default.
- W2100607681 hasConceptScore W2100607681C2776029896 @default.
- W2100607681 hasConceptScore W2100607681C2777303404 @default.
- W2100607681 hasConceptScore W2100607681C2780009758 @default.
- W2100607681 hasConceptScore W2100607681C33923547 @default.
- W2100607681 hasConceptScore W2100607681C41008148 @default.
- W2100607681 hasConceptScore W2100607681C50522688 @default.
- W2100607681 hasConceptScore W2100607681C6180225 @default.
- W2100607681 hasConceptScore W2100607681C71924100 @default.
- W2100607681 hasConceptScore W2100607681C77805123 @default.
- W2100607681 hasConceptScore W2100607681C9936470 @default.
- W2100607681 hasIssue "5" @default.
- W2100607681 hasLocation W21006076811 @default.
- W2100607681 hasOpenAccess W2100607681 @default.
- W2100607681 hasPrimaryLocation W21006076811 @default.
- W2100607681 hasRelatedWork W2027630946 @default.
- W2100607681 hasRelatedWork W2081837274 @default.
- W2100607681 hasRelatedWork W2164852895 @default.
- W2100607681 hasRelatedWork W2544484136 @default.
- W2100607681 hasRelatedWork W2556507952 @default.
- W2100607681 hasRelatedWork W2612844333 @default.