Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100625779> ?p ?o ?g. }
- W2100625779 endingPage "98" @default.
- W2100625779 startingPage "74" @default.
- W2100625779 abstract "A popular hypothesis regarding legged locomotion is that humans and other large animals walk and run in a manner that minimizes the metabolic energy expenditure for locomotion. Here, using numerical optimization and supporting analytical arguments, I obtain the energy-minimizing gaits of many different simple biped models. I consider bipeds with point-mass bodies and massless legs, with or without a knee, with or without a springy tendon in series with the leg muscle and minimizing one of many different 'metabolic cost' models-correlated with muscle work, muscle force raised to some power, the Minetti-Alexander quasi-steady approximation to empirical muscle metabolic rate (from heat and ATPase activity), a new cost function called the 'generalized work cost' C(g) having some positivity and convexity properties (and includes the Minetti-Alexander cost and the work cost as special cases), and generalizations thereof. For many of these models, walking-like gaits are optimal at low speeds and running-like gaits at higher speeds, so a gait transition is optimal. Minimizing the generalized work cost C(g) appears mostly indistinguishable from minimizing muscle work for all the models. Inverted pendulum walking and impulsive running gaits minimize the work cost, generalized work costs C(g) and a few other costs for the springless bipeds; in particular, a knee-torque-squared cost, appropriate as a simplified model for electric motor power for a kneed robot biped. Many optimal gaits had symmetry properties; for instance, the left stance phase was identical to the right stance phases. Muscle force-velocity relations and legs with masses have predictable qualitative effects, if any, on the optima. For bipeds with compliant tendons, the muscle work-minimizing strategies have close to zero muscle work (isometric muscles), with the springs performing all the leg work. These zero work gaits also minimize the generalized work costs C(g) with substantial additive force or force rate costs, indicating that a running animal's metabolic cost could be dominated by the cost of producing isometric force, even though performing muscle work is usually expensive. I also catalogue the many differences between the optimal gaits of the various models. These differences contain information that might help us develop models that better predict locomotion data. In particular, for some biologically plausible cost functions, the presence or absence of springs in series with muscles has a large effect on both the coordination strategy and the absolute cost; the absence of springs results in more impulsive (collisional) optimal gaits and the presence of springs leads to more compliant optimal gaits. Most results are obtained for specific speed and stride length combinations close to preferred human behaviour, but limited numerical experiments show that some qualitative results extend to other speed-stride length combinations as well." @default.
- W2100625779 created "2016-06-24" @default.
- W2100625779 creator A5062283980 @default.
- W2100625779 date "2010-06-11" @default.
- W2100625779 modified "2023-10-14" @default.
- W2100625779 title "Fifteen observations on the structure of energy-minimizing gaits in many simple biped models" @default.
- W2100625779 cites W1512643643 @default.
- W2100625779 cites W1841921101 @default.
- W2100625779 cites W1874450194 @default.
- W2100625779 cites W1966636560 @default.
- W2100625779 cites W1968196344 @default.
- W2100625779 cites W1968635071 @default.
- W2100625779 cites W1969329479 @default.
- W2100625779 cites W1971122356 @default.
- W2100625779 cites W1972345220 @default.
- W2100625779 cites W1976232772 @default.
- W2100625779 cites W1978905053 @default.
- W2100625779 cites W1988266788 @default.
- W2100625779 cites W1988888905 @default.
- W2100625779 cites W1995551113 @default.
- W2100625779 cites W2008342119 @default.
- W2100625779 cites W2009135422 @default.
- W2100625779 cites W2009317155 @default.
- W2100625779 cites W2009399004 @default.
- W2100625779 cites W2010026582 @default.
- W2100625779 cites W2011872941 @default.
- W2100625779 cites W2022300194 @default.
- W2100625779 cites W2027394111 @default.
- W2100625779 cites W2029058516 @default.
- W2100625779 cites W2032357335 @default.
- W2100625779 cites W2033299989 @default.
- W2100625779 cites W2039423191 @default.
- W2100625779 cites W2042992073 @default.
- W2100625779 cites W2048908542 @default.
- W2100625779 cites W2050158673 @default.
- W2100625779 cites W2050536029 @default.
- W2100625779 cites W2053226299 @default.
- W2100625779 cites W2065585431 @default.
- W2100625779 cites W2071307076 @default.
- W2100625779 cites W2072141048 @default.
- W2100625779 cites W2075135730 @default.
- W2100625779 cites W2080826208 @default.
- W2100625779 cites W2090373601 @default.
- W2100625779 cites W2090755132 @default.
- W2100625779 cites W2091976582 @default.
- W2100625779 cites W2100185540 @default.
- W2100625779 cites W2101130318 @default.
- W2100625779 cites W2105637477 @default.
- W2100625779 cites W2113647903 @default.
- W2100625779 cites W2123236823 @default.
- W2100625779 cites W2124216541 @default.
- W2100625779 cites W2126568979 @default.
- W2100625779 cites W2127149049 @default.
- W2100625779 cites W2127733921 @default.
- W2100625779 cites W2128464957 @default.
- W2100625779 cites W2134581541 @default.
- W2100625779 cites W2153624629 @default.
- W2100625779 cites W2157714820 @default.
- W2100625779 cites W2166618012 @default.
- W2100625779 cites W2167463516 @default.
- W2100625779 cites W2190229316 @default.
- W2100625779 cites W2257898290 @default.
- W2100625779 cites W2289628494 @default.
- W2100625779 cites W4214746323 @default.
- W2100625779 doi "https://doi.org/10.1098/rsif.2009.0544" @default.
- W2100625779 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3024815" @default.
- W2100625779 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20542957" @default.
- W2100625779 hasPublicationYear "2010" @default.
- W2100625779 type Work @default.
- W2100625779 sameAs 2100625779 @default.
- W2100625779 citedByCount "106" @default.
- W2100625779 countsByYear W21006257792012 @default.
- W2100625779 countsByYear W21006257792013 @default.
- W2100625779 countsByYear W21006257792014 @default.
- W2100625779 countsByYear W21006257792015 @default.
- W2100625779 countsByYear W21006257792016 @default.
- W2100625779 countsByYear W21006257792017 @default.
- W2100625779 countsByYear W21006257792018 @default.
- W2100625779 countsByYear W21006257792019 @default.
- W2100625779 countsByYear W21006257792020 @default.
- W2100625779 countsByYear W21006257792021 @default.
- W2100625779 countsByYear W21006257792022 @default.
- W2100625779 countsByYear W21006257792023 @default.
- W2100625779 crossrefType "journal-article" @default.
- W2100625779 hasAuthorship W2100625779A5062283980 @default.
- W2100625779 hasBestOaLocation W21006257791 @default.
- W2100625779 hasConcept C107240024 @default.
- W2100625779 hasConcept C121332964 @default.
- W2100625779 hasConcept C144171764 @default.
- W2100625779 hasConcept C151800584 @default.
- W2100625779 hasConcept C154945302 @default.
- W2100625779 hasConcept C163258240 @default.
- W2100625779 hasConcept C18762648 @default.
- W2100625779 hasConcept C2775924081 @default.
- W2100625779 hasConcept C33923547 @default.
- W2100625779 hasConcept C39920418 @default.
- W2100625779 hasConcept C41008148 @default.
- W2100625779 hasConcept C47446073 @default.