Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100694054> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2100694054 abstract "Hemorrhagic shock (HS) potentially impacts the chance of survival in most traumatic injuries. Thus, it is highly desirable to maximize the survival rate in cases of blood loss by predicting the occurrence of hemorrhagic shock with biomedical signals. Since analyzing one physiological signal may not enough to accurately predict blood loss severity, two types of physiological signals - Electrocardiography (ECG) and Transcranial Doppler (TCD) - are used to discover the degree of severity. In this study, these degrees are classified as mild, moderate and severe, and also severe and non-severe. The data for this study were generated using the human simulated model of hemorrhage, which is called lower body negative pressure (LBNP). The analysis is done by applying discrete wavelet transformation (DWT). The wavelet-based features are defined using the detail and approximate coefficients and machine learning algorithms are used for classification. The objective of this study is to evaluate the improvement when analyzing ECG and TCD physiological signals together to classify the severity of blood loss. The results of this study show a prediction accuracy of 85.9% achieved by support vector machine in identifying severe/non-severe states." @default.
- W2100694054 created "2016-06-24" @default.
- W2100694054 creator A5031883720 @default.
- W2100694054 creator A5045618287 @default.
- W2100694054 creator A5064772845 @default.
- W2100694054 creator A5067697464 @default.
- W2100694054 date "2009-09-01" @default.
- W2100694054 modified "2023-09-23" @default.
- W2100694054 title "Combining predictive capabilities of transcranial doppler with electrocardiogram to predict hemorrhagic shock" @default.
- W2100694054 cites W1485718599 @default.
- W2100694054 cites W1503343720 @default.
- W2100694054 cites W1512748702 @default.
- W2100694054 cites W1597293064 @default.
- W2100694054 cites W1971777262 @default.
- W2100694054 cites W1971974831 @default.
- W2100694054 cites W1989541453 @default.
- W2100694054 cites W2001189230 @default.
- W2100694054 cites W2020014449 @default.
- W2100694054 cites W2085304298 @default.
- W2100694054 cites W2093582280 @default.
- W2100694054 cites W2095970328 @default.
- W2100694054 cites W2104089870 @default.
- W2100694054 cites W2119634539 @default.
- W2100694054 cites W2133589238 @default.
- W2100694054 cites W2151499534 @default.
- W2100694054 cites W2285072859 @default.
- W2100694054 cites W2417857228 @default.
- W2100694054 cites W2543313159 @default.
- W2100694054 cites W1499044690 @default.
- W2100694054 cites W1598222629 @default.
- W2100694054 cites W1921729215 @default.
- W2100694054 cites W2142716016 @default.
- W2100694054 doi "https://doi.org/10.1109/iembs.2009.5335394" @default.
- W2100694054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19965226" @default.
- W2100694054 hasPublicationYear "2009" @default.
- W2100694054 type Work @default.
- W2100694054 sameAs 2100694054 @default.
- W2100694054 citedByCount "2" @default.
- W2100694054 countsByYear W21006940542015 @default.
- W2100694054 countsByYear W21006940542022 @default.
- W2100694054 crossrefType "proceedings-article" @default.
- W2100694054 hasAuthorship W2100694054A5031883720 @default.
- W2100694054 hasAuthorship W2100694054A5045618287 @default.
- W2100694054 hasAuthorship W2100694054A5064772845 @default.
- W2100694054 hasAuthorship W2100694054A5067697464 @default.
- W2100694054 hasConcept C12267149 @default.
- W2100694054 hasConcept C126322002 @default.
- W2100694054 hasConcept C153180895 @default.
- W2100694054 hasConcept C154945302 @default.
- W2100694054 hasConcept C164705383 @default.
- W2100694054 hasConcept C191616109 @default.
- W2100694054 hasConcept C196216189 @default.
- W2100694054 hasConcept C2780040984 @default.
- W2100694054 hasConcept C2781300812 @default.
- W2100694054 hasConcept C41008148 @default.
- W2100694054 hasConcept C47432892 @default.
- W2100694054 hasConcept C71924100 @default.
- W2100694054 hasConceptScore W2100694054C12267149 @default.
- W2100694054 hasConceptScore W2100694054C126322002 @default.
- W2100694054 hasConceptScore W2100694054C153180895 @default.
- W2100694054 hasConceptScore W2100694054C154945302 @default.
- W2100694054 hasConceptScore W2100694054C164705383 @default.
- W2100694054 hasConceptScore W2100694054C191616109 @default.
- W2100694054 hasConceptScore W2100694054C196216189 @default.
- W2100694054 hasConceptScore W2100694054C2780040984 @default.
- W2100694054 hasConceptScore W2100694054C2781300812 @default.
- W2100694054 hasConceptScore W2100694054C41008148 @default.
- W2100694054 hasConceptScore W2100694054C47432892 @default.
- W2100694054 hasConceptScore W2100694054C71924100 @default.
- W2100694054 hasLocation W21006940541 @default.
- W2100694054 hasLocation W21006940542 @default.
- W2100694054 hasOpenAccess W2100694054 @default.
- W2100694054 hasPrimaryLocation W21006940541 @default.
- W2100694054 hasRelatedWork W2041246122 @default.
- W2100694054 hasRelatedWork W2041399278 @default.
- W2100694054 hasRelatedWork W2099369243 @default.
- W2100694054 hasRelatedWork W2120008580 @default.
- W2100694054 hasRelatedWork W2136184105 @default.
- W2100694054 hasRelatedWork W2148116311 @default.
- W2100694054 hasRelatedWork W2163073107 @default.
- W2100694054 hasRelatedWork W4223656335 @default.
- W2100694054 hasRelatedWork W2187500075 @default.
- W2100694054 hasRelatedWork W2345184372 @default.
- W2100694054 isParatext "false" @default.
- W2100694054 isRetracted "false" @default.
- W2100694054 magId "2100694054" @default.
- W2100694054 workType "article" @default.