Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100697007> ?p ?o ?g. }
- W2100697007 endingPage "808" @default.
- W2100697007 startingPage "796" @default.
- W2100697007 abstract "We conducted an extensive set of empirical analyses to examine the effect of the number of events per variable (EPV) on the relative performance of three different methods for assessing the predictive accuracy of a logistic regression model: apparent performance in the analysis sample, split-sample validation, and optimism correction using bootstrap methods. Using a single dataset of patients hospitalized with heart failure, we compared the estimates of discriminatory performance from these methods to those for a very large independent validation sample arising from the same population. As anticipated, the apparent performance was optimistically biased, with the degree of optimism diminishing as the number of events per variable increased. Differences between the bootstrap-corrected approach and the use of an independent validation sample were minimal once the number of events per variable was at least 20. Split-sample assessment resulted in too pessimistic and highly uncertain estimates of model performance. Apparent performance estimates had lower mean squared error compared to split-sample estimates, but the lowest mean squared error was obtained by bootstrap-corrected optimism estimates. For bias, variance, and mean squared error of the performance estimates, the penalty incurred by using split-sample validation was equivalent to reducing the sample size by a proportion equivalent to the proportion of the sample that was withheld for model validation. In conclusion, split-sample validation is inefficient and apparent performance is too optimistic for internal validation of regression-based prediction models. Modern validation methods, such as bootstrap-based optimism correction, are preferable. While these findings may be unsurprising to many statisticians, the results of the current study reinforce what should be considered good statistical practice in the development and validation of clinical prediction models." @default.
- W2100697007 created "2016-06-24" @default.
- W2100697007 creator A5030080832 @default.
- W2100697007 creator A5091435927 @default.
- W2100697007 date "2014-11-19" @default.
- W2100697007 modified "2023-10-16" @default.
- W2100697007 title "Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models" @default.
- W2100697007 cites W1926248049 @default.
- W2100697007 cites W1976144991 @default.
- W2100697007 cites W1997255166 @default.
- W2100697007 cites W1998777043 @default.
- W2100697007 cites W2005918389 @default.
- W2100697007 cites W2037668591 @default.
- W2100697007 cites W2071379517 @default.
- W2100697007 cites W2072357817 @default.
- W2100697007 cites W2074932800 @default.
- W2100697007 cites W2079100340 @default.
- W2100697007 cites W2089463633 @default.
- W2100697007 cites W2112200626 @default.
- W2100697007 cites W2117746627 @default.
- W2100697007 cites W2159704023 @default.
- W2100697007 cites W2911964244 @default.
- W2100697007 cites W3099723433 @default.
- W2100697007 cites W3106889297 @default.
- W2100697007 cites W3175417087 @default.
- W2100697007 cites W4213286494 @default.
- W2100697007 cites W4249772036 @default.
- W2100697007 doi "https://doi.org/10.1177/0962280214558972" @default.
- W2100697007 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5394463" @default.
- W2100697007 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25411322" @default.
- W2100697007 hasPublicationYear "2014" @default.
- W2100697007 type Work @default.
- W2100697007 sameAs 2100697007 @default.
- W2100697007 citedByCount "239" @default.
- W2100697007 countsByYear W21006970072015 @default.
- W2100697007 countsByYear W21006970072016 @default.
- W2100697007 countsByYear W21006970072017 @default.
- W2100697007 countsByYear W21006970072018 @default.
- W2100697007 countsByYear W21006970072019 @default.
- W2100697007 countsByYear W21006970072020 @default.
- W2100697007 countsByYear W21006970072021 @default.
- W2100697007 countsByYear W21006970072022 @default.
- W2100697007 countsByYear W21006970072023 @default.
- W2100697007 crossrefType "journal-article" @default.
- W2100697007 hasAuthorship W2100697007A5030080832 @default.
- W2100697007 hasAuthorship W2100697007A5091435927 @default.
- W2100697007 hasBestOaLocation W21006970071 @default.
- W2100697007 hasConcept C105795698 @default.
- W2100697007 hasConcept C121955636 @default.
- W2100697007 hasConcept C129848803 @default.
- W2100697007 hasConcept C139945424 @default.
- W2100697007 hasConcept C149782125 @default.
- W2100697007 hasConcept C151956035 @default.
- W2100697007 hasConcept C152877465 @default.
- W2100697007 hasConcept C162324750 @default.
- W2100697007 hasConcept C185592680 @default.
- W2100697007 hasConcept C196083921 @default.
- W2100697007 hasConcept C198531522 @default.
- W2100697007 hasConcept C27574286 @default.
- W2100697007 hasConcept C33923547 @default.
- W2100697007 hasConcept C43617362 @default.
- W2100697007 hasConcept C48921125 @default.
- W2100697007 hasConcept C83546350 @default.
- W2100697007 hasConceptScore W2100697007C105795698 @default.
- W2100697007 hasConceptScore W2100697007C121955636 @default.
- W2100697007 hasConceptScore W2100697007C129848803 @default.
- W2100697007 hasConceptScore W2100697007C139945424 @default.
- W2100697007 hasConceptScore W2100697007C149782125 @default.
- W2100697007 hasConceptScore W2100697007C151956035 @default.
- W2100697007 hasConceptScore W2100697007C152877465 @default.
- W2100697007 hasConceptScore W2100697007C162324750 @default.
- W2100697007 hasConceptScore W2100697007C185592680 @default.
- W2100697007 hasConceptScore W2100697007C196083921 @default.
- W2100697007 hasConceptScore W2100697007C198531522 @default.
- W2100697007 hasConceptScore W2100697007C27574286 @default.
- W2100697007 hasConceptScore W2100697007C33923547 @default.
- W2100697007 hasConceptScore W2100697007C43617362 @default.
- W2100697007 hasConceptScore W2100697007C48921125 @default.
- W2100697007 hasConceptScore W2100697007C83546350 @default.
- W2100697007 hasIssue "2" @default.
- W2100697007 hasLocation W21006970071 @default.
- W2100697007 hasLocation W21006970072 @default.
- W2100697007 hasLocation W21006970073 @default.
- W2100697007 hasLocation W21006970074 @default.
- W2100697007 hasLocation W21006970075 @default.
- W2100697007 hasLocation W21006970076 @default.
- W2100697007 hasOpenAccess W2100697007 @default.
- W2100697007 hasPrimaryLocation W21006970071 @default.
- W2100697007 hasRelatedWork W1987874405 @default.
- W2100697007 hasRelatedWork W1992859205 @default.
- W2100697007 hasRelatedWork W2021320650 @default.
- W2100697007 hasRelatedWork W2023475031 @default.
- W2100697007 hasRelatedWork W2471082825 @default.
- W2100697007 hasRelatedWork W2966251753 @default.
- W2100697007 hasRelatedWork W2980277513 @default.
- W2100697007 hasRelatedWork W3188410990 @default.
- W2100697007 hasRelatedWork W4212972958 @default.
- W2100697007 hasRelatedWork W2251039108 @default.