Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100761231> ?p ?o ?g. }
- W2100761231 endingPage "758" @default.
- W2100761231 startingPage "745" @default.
- W2100761231 abstract "ABSTRACT Aim To analyse the effects of simultaneously using spatial and phylogenetic information in removing spatial autocorrelation of residuals within a multiple regression framework of trait analysis. Location Switzerland, Europe. Methods We used an eigenvector filtering approach to analyse the relationship between spatial distribution of a trait (flowering phenology) and environmental covariates in a multiple regression framework. Eigenvector filters were calculated from ordinations of distance matrices. Distance matrices were either based on pure spatial information, pure phylogenetic information or spatially structured phylogenetic information. In the multiple regression, those filters were selected which best reduced Moran's I coefficient of residual autocorrelation. These were added as covariates to a regression model of environmental variables explaining trait distribution. Results The simultaneous provision of spatial and phylogenetic information was effectively able to remove residual autocorrelation in the analysis. Adding phylogenetic information was superior to adding purely spatial information. Applying filters showed altered results, i.e. different environmental predictors were seen to be significant. Nevertheless, mean annual temperature and calcareous substrate remained the most important predictors to explain the onset of flowering in Switzerland; namely, the warmer the temperature and the more calcareous the substrate, the earlier the onset of flowering. A sequential approach, i.e. first removing the phylogenetic signal from traits and then applying a spatial analysis, did not provide more information or yield less autocorrelation than simple or purely spatial models. Main conclusions The combination of spatial and spatio‐phylogenetic information is recommended in the analysis of trait distribution data in a multiple regression framework. This approach is an efficient means for reducing residual autocorrelation and for testing the robustness of results, including the indication of incomplete parameterizations, and can facilitate ecological interpretation." @default.
- W2100761231 created "2016-06-24" @default.
- W2100761231 creator A5040162026 @default.
- W2100761231 creator A5050908525 @default.
- W2100761231 creator A5061989985 @default.
- W2100761231 date "2009-10-08" @default.
- W2100761231 modified "2023-10-10" @default.
- W2100761231 title "Combining spatial and phylogenetic eigenvector filtering in trait analysis" @default.
- W2100761231 cites W1766029576 @default.
- W2100761231 cites W1964449090 @default.
- W2100761231 cites W1966772288 @default.
- W2100761231 cites W1972221753 @default.
- W2100761231 cites W1990329998 @default.
- W2100761231 cites W1993262630 @default.
- W2100761231 cites W1996720739 @default.
- W2100761231 cites W2001279293 @default.
- W2100761231 cites W2003315067 @default.
- W2100761231 cites W2010126995 @default.
- W2100761231 cites W2013305086 @default.
- W2100761231 cites W2025958753 @default.
- W2100761231 cites W2026106723 @default.
- W2100761231 cites W2031330407 @default.
- W2100761231 cites W2034994429 @default.
- W2100761231 cites W2043052546 @default.
- W2100761231 cites W2067174801 @default.
- W2100761231 cites W2069924707 @default.
- W2100761231 cites W2078783610 @default.
- W2100761231 cites W2084874404 @default.
- W2100761231 cites W2089792340 @default.
- W2100761231 cites W2101857947 @default.
- W2100761231 cites W2109342520 @default.
- W2100761231 cites W2109465567 @default.
- W2100761231 cites W2122512858 @default.
- W2100761231 cites W2124545789 @default.
- W2100761231 cites W2129697667 @default.
- W2100761231 cites W2142748250 @default.
- W2100761231 cites W2148081592 @default.
- W2100761231 cites W2149765389 @default.
- W2100761231 cites W2150163700 @default.
- W2100761231 cites W2152413853 @default.
- W2100761231 cites W2155728864 @default.
- W2100761231 cites W2160061095 @default.
- W2100761231 cites W2163614163 @default.
- W2100761231 cites W2163780908 @default.
- W2100761231 cites W2166329490 @default.
- W2100761231 cites W2170565777 @default.
- W2100761231 cites W2172599765 @default.
- W2100761231 cites W2316518323 @default.
- W2100761231 cites W2325208341 @default.
- W2100761231 cites W2330806830 @default.
- W2100761231 cites W2570633564 @default.
- W2100761231 cites W3016247684 @default.
- W2100761231 cites W4248884888 @default.
- W2100761231 cites W4256360841 @default.
- W2100761231 doi "https://doi.org/10.1111/j.1466-8238.2009.00481.x" @default.
- W2100761231 hasPublicationYear "2009" @default.
- W2100761231 type Work @default.
- W2100761231 sameAs 2100761231 @default.
- W2100761231 citedByCount "53" @default.
- W2100761231 countsByYear W21007612312012 @default.
- W2100761231 countsByYear W21007612312013 @default.
- W2100761231 countsByYear W21007612312014 @default.
- W2100761231 countsByYear W21007612312015 @default.
- W2100761231 countsByYear W21007612312016 @default.
- W2100761231 countsByYear W21007612312017 @default.
- W2100761231 countsByYear W21007612312018 @default.
- W2100761231 countsByYear W21007612312019 @default.
- W2100761231 countsByYear W21007612312020 @default.
- W2100761231 countsByYear W21007612312021 @default.
- W2100761231 countsByYear W21007612312022 @default.
- W2100761231 countsByYear W21007612312023 @default.
- W2100761231 crossrefType "journal-article" @default.
- W2100761231 hasAuthorship W2100761231A5040162026 @default.
- W2100761231 hasAuthorship W2100761231A5050908525 @default.
- W2100761231 hasAuthorship W2100761231A5061989985 @default.
- W2100761231 hasConcept C104317684 @default.
- W2100761231 hasConcept C105795698 @default.
- W2100761231 hasConcept C106934330 @default.
- W2100761231 hasConcept C119043178 @default.
- W2100761231 hasConcept C152877465 @default.
- W2100761231 hasConcept C159620131 @default.
- W2100761231 hasConcept C18903297 @default.
- W2100761231 hasConcept C193252679 @default.
- W2100761231 hasConcept C199360897 @default.
- W2100761231 hasConcept C205649164 @default.
- W2100761231 hasConcept C27438332 @default.
- W2100761231 hasConcept C33923547 @default.
- W2100761231 hasConcept C41008148 @default.
- W2100761231 hasConcept C48921125 @default.
- W2100761231 hasConcept C55493867 @default.
- W2100761231 hasConcept C83546350 @default.
- W2100761231 hasConcept C86803240 @default.
- W2100761231 hasConceptScore W2100761231C104317684 @default.
- W2100761231 hasConceptScore W2100761231C105795698 @default.
- W2100761231 hasConceptScore W2100761231C106934330 @default.
- W2100761231 hasConceptScore W2100761231C119043178 @default.
- W2100761231 hasConceptScore W2100761231C152877465 @default.
- W2100761231 hasConceptScore W2100761231C159620131 @default.