Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100802110> ?p ?o ?g. }
- W2100802110 endingPage "730" @default.
- W2100802110 startingPage "722" @default.
- W2100802110 abstract "The majority of patients in the hospital are ambulatory and would benefit significantly from predictive and personalized monitoring systems. Such patients are well suited to having their physiological condition monitored using low-power, minimally intrusive wearable sensors. Despite data-collection systems now being manufactured commercially, allowing physiological data to be acquired from mobile patients, little work has been undertaken on the use of the resultant data in a principled manner for robust patient care, including predictive monitoring. Most current devices generate so many false-positive alerts that devices cannot be used for routine clinical practice. This paper explores principled machine learning approaches to interpreting large quantities of continuously acquired, multivariate physiological data, using wearable patient monitors, where the goal is to provide early warning of serious physiological determination, such that a degree of predictive care may be provided. We adopt a one-class support vector machine formulation, proposing a formulation for determining the free parameters of the model using partial area under the ROC curve, a method arising from the unique requirements of performing online analysis with data from patient-worn sensors. There are few clinical evaluations of machine learning techniques in the literature, so we present results from a study at the Oxford University Hospitals NHS Trust devised to investigate the large-scale clinical use of patient-worn sensors for predictive monitoring in a ward with a high incidence of patient mortality. We show that our system can combine routine manual observations made by clinical staff with the continuous data acquired from wearable sensors. Practical considerations and recommendations based on our experiences of this clinical study are discussed, in the context of a framework for personalized monitoring." @default.
- W2100802110 created "2016-06-24" @default.
- W2100802110 creator A5013117957 @default.
- W2100802110 creator A5040302008 @default.
- W2100802110 creator A5043870720 @default.
- W2100802110 creator A5055138562 @default.
- W2100802110 creator A5074311458 @default.
- W2100802110 date "2014-05-01" @default.
- W2100802110 modified "2023-10-16" @default.
- W2100802110 title "Predictive Monitoring of Mobile Patients by Combining Clinical Observations With Data From Wearable Sensors" @default.
- W2100802110 cites W1499399937 @default.
- W2100802110 cites W1510073064 @default.
- W2100802110 cites W1864859000 @default.
- W2100802110 cites W2002971490 @default.
- W2100802110 cites W2033328780 @default.
- W2100802110 cites W2039695998 @default.
- W2100802110 cites W2043440122 @default.
- W2100802110 cites W2064454054 @default.
- W2100802110 cites W2078949921 @default.
- W2100802110 cites W2097344734 @default.
- W2100802110 cites W2103872474 @default.
- W2100802110 cites W2128478356 @default.
- W2100802110 cites W2129882004 @default.
- W2100802110 cites W2131496831 @default.
- W2100802110 cites W2132870739 @default.
- W2100802110 cites W2140890425 @default.
- W2100802110 cites W2162840817 @default.
- W2100802110 cites W2169181523 @default.
- W2100802110 cites W4212863985 @default.
- W2100802110 cites W4232985829 @default.
- W2100802110 cites W4240338048 @default.
- W2100802110 doi "https://doi.org/10.1109/jbhi.2013.2293059" @default.
- W2100802110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24808218" @default.
- W2100802110 hasPublicationYear "2014" @default.
- W2100802110 type Work @default.
- W2100802110 sameAs 2100802110 @default.
- W2100802110 citedByCount "149" @default.
- W2100802110 countsByYear W21008021102014 @default.
- W2100802110 countsByYear W21008021102015 @default.
- W2100802110 countsByYear W21008021102016 @default.
- W2100802110 countsByYear W21008021102017 @default.
- W2100802110 countsByYear W21008021102018 @default.
- W2100802110 countsByYear W21008021102019 @default.
- W2100802110 countsByYear W21008021102020 @default.
- W2100802110 countsByYear W21008021102021 @default.
- W2100802110 countsByYear W21008021102022 @default.
- W2100802110 countsByYear W21008021102023 @default.
- W2100802110 crossrefType "journal-article" @default.
- W2100802110 hasAuthorship W2100802110A5013117957 @default.
- W2100802110 hasAuthorship W2100802110A5040302008 @default.
- W2100802110 hasAuthorship W2100802110A5043870720 @default.
- W2100802110 hasAuthorship W2100802110A5055138562 @default.
- W2100802110 hasAuthorship W2100802110A5074311458 @default.
- W2100802110 hasBestOaLocation W21008021101 @default.
- W2100802110 hasConcept C105795698 @default.
- W2100802110 hasConcept C111472728 @default.
- W2100802110 hasConcept C111919701 @default.
- W2100802110 hasConcept C119857082 @default.
- W2100802110 hasConcept C12267149 @default.
- W2100802110 hasConcept C124101348 @default.
- W2100802110 hasConcept C126838900 @default.
- W2100802110 hasConcept C127413603 @default.
- W2100802110 hasConcept C133462117 @default.
- W2100802110 hasConcept C138885662 @default.
- W2100802110 hasConcept C149635348 @default.
- W2100802110 hasConcept C150594956 @default.
- W2100802110 hasConcept C154945302 @default.
- W2100802110 hasConcept C175079658 @default.
- W2100802110 hasConcept C186967261 @default.
- W2100802110 hasConcept C21547014 @default.
- W2100802110 hasConcept C2776902269 @default.
- W2100802110 hasConcept C2778136018 @default.
- W2100802110 hasConcept C33923547 @default.
- W2100802110 hasConcept C41008148 @default.
- W2100802110 hasConcept C54290928 @default.
- W2100802110 hasConcept C71924100 @default.
- W2100802110 hasConceptScore W2100802110C105795698 @default.
- W2100802110 hasConceptScore W2100802110C111472728 @default.
- W2100802110 hasConceptScore W2100802110C111919701 @default.
- W2100802110 hasConceptScore W2100802110C119857082 @default.
- W2100802110 hasConceptScore W2100802110C12267149 @default.
- W2100802110 hasConceptScore W2100802110C124101348 @default.
- W2100802110 hasConceptScore W2100802110C126838900 @default.
- W2100802110 hasConceptScore W2100802110C127413603 @default.
- W2100802110 hasConceptScore W2100802110C133462117 @default.
- W2100802110 hasConceptScore W2100802110C138885662 @default.
- W2100802110 hasConceptScore W2100802110C149635348 @default.
- W2100802110 hasConceptScore W2100802110C150594956 @default.
- W2100802110 hasConceptScore W2100802110C154945302 @default.
- W2100802110 hasConceptScore W2100802110C175079658 @default.
- W2100802110 hasConceptScore W2100802110C186967261 @default.
- W2100802110 hasConceptScore W2100802110C21547014 @default.
- W2100802110 hasConceptScore W2100802110C2776902269 @default.
- W2100802110 hasConceptScore W2100802110C2778136018 @default.
- W2100802110 hasConceptScore W2100802110C33923547 @default.
- W2100802110 hasConceptScore W2100802110C41008148 @default.
- W2100802110 hasConceptScore W2100802110C54290928 @default.
- W2100802110 hasConceptScore W2100802110C71924100 @default.