Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100803856> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2100803856 endingPage "1552" @default.
- W2100803856 startingPage "1539" @default.
- W2100803856 abstract "Ideally biosignatures can be detected at the early infection phase and used both for developing diagnostic patterns and for prognostic triage. Such biosignatures are important for vaccine validation and to provide risk stratification to a population such as for the identification of individuals who are exposed to biological or chemical agents and who are at high risk for developing an infection. The research goal is to detect broad based biosignature models and is initially focused on developing effective computer-augmented pathology tied to animal models developed at the University of New Mexico (UNM). Using lung tissue from infected and nai ve mice, feature extraction from images of the tissue under a specialized microscope, and Bayesian networks to analyze the data sets of features, we were able to differentiate normal from diseased samples and viral from bacterial samples in mid to late stages of infection. This effort has shown the potential effectiveness of computer-augmented pathology in this application. The extended research intends to couple analysis of serum, microarray analysis of organs, proteomic data and the pathology. The rational for the current invasive procedure on animal models is to facilitate the development of data analysis and machine learning techniques that can eventually be generalized to the task of discovering non-invasive and early stage biosignatures for human models." @default.
- W2100803856 created "2016-06-24" @default.
- W2100803856 creator A5000154666 @default.
- W2100803856 creator A5010064152 @default.
- W2100803856 creator A5013864153 @default.
- W2100803856 creator A5040874009 @default.
- W2100803856 creator A5071634216 @default.
- W2100803856 creator A5087406539 @default.
- W2100803856 creator A5090320441 @default.
- W2100803856 date "2007-11-01" @default.
- W2100803856 modified "2023-09-27" @default.
- W2100803856 title "Learning and modeling biosignatures from tissue images" @default.
- W2100803856 cites W1504694836 @default.
- W2100803856 cites W1547246444 @default.
- W2100803856 cites W1549656520 @default.
- W2100803856 cites W1554663460 @default.
- W2100803856 cites W1562899259 @default.
- W2100803856 cites W1568586930 @default.
- W2100803856 cites W1589603734 @default.
- W2100803856 cites W1625504505 @default.
- W2100803856 cites W1640580225 @default.
- W2100803856 cites W1698663318 @default.
- W2100803856 cites W1817561967 @default.
- W2100803856 cites W1988814833 @default.
- W2100803856 cites W2008906462 @default.
- W2100803856 cites W2019963883 @default.
- W2100803856 cites W2054658115 @default.
- W2100803856 cites W2069469807 @default.
- W2100803856 cites W2112634639 @default.
- W2100803856 cites W2125055259 @default.
- W2100803856 cites W2126151607 @default.
- W2100803856 cites W2149706766 @default.
- W2100803856 cites W2159080219 @default.
- W2100803856 cites W2170112109 @default.
- W2100803856 cites W2974701791 @default.
- W2100803856 cites W3017143921 @default.
- W2100803856 cites W3121299688 @default.
- W2100803856 cites W3139831614 @default.
- W2100803856 cites W73118757 @default.
- W2100803856 doi "https://doi.org/10.1016/j.compbiomed.2007.02.005" @default.
- W2100803856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17433283" @default.
- W2100803856 hasPublicationYear "2007" @default.
- W2100803856 type Work @default.
- W2100803856 sameAs 2100803856 @default.
- W2100803856 citedByCount "1" @default.
- W2100803856 crossrefType "journal-article" @default.
- W2100803856 hasAuthorship W2100803856A5000154666 @default.
- W2100803856 hasAuthorship W2100803856A5010064152 @default.
- W2100803856 hasAuthorship W2100803856A5013864153 @default.
- W2100803856 hasAuthorship W2100803856A5040874009 @default.
- W2100803856 hasAuthorship W2100803856A5071634216 @default.
- W2100803856 hasAuthorship W2100803856A5087406539 @default.
- W2100803856 hasAuthorship W2100803856A5090320441 @default.
- W2100803856 hasConcept C116834253 @default.
- W2100803856 hasConcept C119857082 @default.
- W2100803856 hasConcept C154945302 @default.
- W2100803856 hasConcept C18903297 @default.
- W2100803856 hasConcept C2908647359 @default.
- W2100803856 hasConcept C41008148 @default.
- W2100803856 hasConcept C71924100 @default.
- W2100803856 hasConcept C86803240 @default.
- W2100803856 hasConcept C99454951 @default.
- W2100803856 hasConceptScore W2100803856C116834253 @default.
- W2100803856 hasConceptScore W2100803856C119857082 @default.
- W2100803856 hasConceptScore W2100803856C154945302 @default.
- W2100803856 hasConceptScore W2100803856C18903297 @default.
- W2100803856 hasConceptScore W2100803856C2908647359 @default.
- W2100803856 hasConceptScore W2100803856C41008148 @default.
- W2100803856 hasConceptScore W2100803856C71924100 @default.
- W2100803856 hasConceptScore W2100803856C86803240 @default.
- W2100803856 hasConceptScore W2100803856C99454951 @default.
- W2100803856 hasIssue "11" @default.
- W2100803856 hasLocation W21008038561 @default.
- W2100803856 hasLocation W21008038562 @default.
- W2100803856 hasOpenAccess W2100803856 @default.
- W2100803856 hasPrimaryLocation W21008038561 @default.
- W2100803856 hasRelatedWork W2961085424 @default.
- W2100803856 hasRelatedWork W3046775127 @default.
- W2100803856 hasRelatedWork W3170094116 @default.
- W2100803856 hasRelatedWork W3209574120 @default.
- W2100803856 hasRelatedWork W4205958290 @default.
- W2100803856 hasRelatedWork W4285260836 @default.
- W2100803856 hasRelatedWork W4286629047 @default.
- W2100803856 hasRelatedWork W4306321456 @default.
- W2100803856 hasRelatedWork W4306674287 @default.
- W2100803856 hasRelatedWork W4224009465 @default.
- W2100803856 hasVolume "37" @default.
- W2100803856 isParatext "false" @default.
- W2100803856 isRetracted "false" @default.
- W2100803856 magId "2100803856" @default.
- W2100803856 workType "article" @default.