Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100836148> ?p ?o ?g. }
- W2100836148 endingPage "20141073" @default.
- W2100836148 startingPage "20141073" @default.
- W2100836148 abstract "Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes—a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion." @default.
- W2100836148 created "2016-06-24" @default.
- W2100836148 creator A5003969045 @default.
- W2100836148 creator A5005931821 @default.
- W2100836148 creator A5028851780 @default.
- W2100836148 creator A5033060991 @default.
- W2100836148 creator A5083843494 @default.
- W2100836148 date "2015-03-01" @default.
- W2100836148 modified "2023-10-13" @default.
- W2100836148 title "Enhancing physiologic simulations using supervised learning on coarse mesh solutions" @default.
- W2100836148 cites W1233989772 @default.
- W2100836148 cites W127494906 @default.
- W2100836148 cites W1488547694 @default.
- W2100836148 cites W1509224376 @default.
- W2100836148 cites W1660264423 @default.
- W2100836148 cites W1742512077 @default.
- W2100836148 cites W1911004364 @default.
- W2100836148 cites W194144942 @default.
- W2100836148 cites W1963722732 @default.
- W2100836148 cites W196677194 @default.
- W2100836148 cites W1971616151 @default.
- W2100836148 cites W1974801788 @default.
- W2100836148 cites W1978002182 @default.
- W2100836148 cites W1983956166 @default.
- W2100836148 cites W1984992241 @default.
- W2100836148 cites W1985412770 @default.
- W2100836148 cites W1985962334 @default.
- W2100836148 cites W1987905947 @default.
- W2100836148 cites W1994867351 @default.
- W2100836148 cites W199763307 @default.
- W2100836148 cites W1998663280 @default.
- W2100836148 cites W2009086730 @default.
- W2100836148 cites W2011269517 @default.
- W2100836148 cites W2017919038 @default.
- W2100836148 cites W2018044188 @default.
- W2100836148 cites W2019377400 @default.
- W2100836148 cites W2023129450 @default.
- W2100836148 cites W2023600408 @default.
- W2100836148 cites W2024697317 @default.
- W2100836148 cites W2028425022 @default.
- W2100836148 cites W2034774374 @default.
- W2100836148 cites W2036161404 @default.
- W2100836148 cites W2036816056 @default.
- W2100836148 cites W2059937103 @default.
- W2100836148 cites W2064447110 @default.
- W2100836148 cites W2066640904 @default.
- W2100836148 cites W2067512597 @default.
- W2100836148 cites W2074491029 @default.
- W2100836148 cites W2082807438 @default.
- W2100836148 cites W2083027289 @default.
- W2100836148 cites W2095680098 @default.
- W2100836148 cites W2099092262 @default.
- W2100836148 cites W2102199083 @default.
- W2100836148 cites W2105813544 @default.
- W2100836148 cites W2106314901 @default.
- W2100836148 cites W2107394367 @default.
- W2100836148 cites W2108871285 @default.
- W2100836148 cites W2112985838 @default.
- W2100836148 cites W2113407349 @default.
- W2100836148 cites W2113741278 @default.
- W2100836148 cites W2124385743 @default.
- W2100836148 cites W2130055882 @default.
- W2100836148 cites W2133074406 @default.
- W2100836148 cites W2140469561 @default.
- W2100836148 cites W2144762496 @default.
- W2100836148 cites W2149492462 @default.
- W2100836148 cites W2156886047 @default.
- W2100836148 cites W2488433815 @default.
- W2100836148 cites W2787894218 @default.
- W2100836148 cites W2910748611 @default.
- W2100836148 cites W33402585 @default.
- W2100836148 cites W4251650715 @default.
- W2100836148 cites W4300958603 @default.
- W2100836148 doi "https://doi.org/10.1098/rsif.2014.1073" @default.
- W2100836148 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4345474" @default.
- W2100836148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25652458" @default.
- W2100836148 hasPublicationYear "2015" @default.
- W2100836148 type Work @default.
- W2100836148 sameAs 2100836148 @default.
- W2100836148 citedByCount "14" @default.
- W2100836148 countsByYear W21008361482016 @default.
- W2100836148 countsByYear W21008361482018 @default.
- W2100836148 countsByYear W21008361482019 @default.
- W2100836148 countsByYear W21008361482020 @default.
- W2100836148 countsByYear W21008361482021 @default.
- W2100836148 countsByYear W21008361482022 @default.
- W2100836148 crossrefType "journal-article" @default.
- W2100836148 hasAuthorship W2100836148A5003969045 @default.
- W2100836148 hasAuthorship W2100836148A5005931821 @default.
- W2100836148 hasAuthorship W2100836148A5028851780 @default.
- W2100836148 hasAuthorship W2100836148A5033060991 @default.
- W2100836148 hasAuthorship W2100836148A5083843494 @default.
- W2100836148 hasBestOaLocation W21008361481 @default.
- W2100836148 hasConcept C111919701 @default.
- W2100836148 hasConcept C113364801 @default.
- W2100836148 hasConcept C11413529 @default.
- W2100836148 hasConcept C119599485 @default.
- W2100836148 hasConcept C119857082 @default.