Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100846522> ?p ?o ?g. }
- W2100846522 abstract "This dissertation is a study of artificial intelligence for diagnosing the condition of high voltage bushings. The techniques include neural networks, genetic algorithms, fuzzy set theory, particle swarm optimisation, multi-classifier systems, factor analysis, principal component analysis, multidimensional scaling, data-fusion techniques, automatic relevance determination and autoencoders. The classification is done using Dissolved Gas Analysis (DGA) data based on field experience together with criteria from IEEEc57.104 and IEC60599. A review of current literature showed that common methods for the diagnosis of bushings are: partial discharge, DGA, tan(dielectric dissipation factor), water content in oil, dielectric strength of oil, acidity level (neutralisation value), visual analysis of sludge in suspension, colour of the oil, furanic content, degree of polymerisation (DP), strength of the insulating paper, interfacial tension or oxygen content tests. All the methods have limitations in terms of time and accuracy in decision making. The fact that making decisions using each of these methods individually is highly subjective, also the huge size of the data base of historical data, as well as the loss of skills due to retirement of experienced technical staff, highlights the need for an automated diagnosis tool that integrates information from the many sensors and recalls the historical decisions and learns from new information. Three classifiers that are compared in this analysis are radial basis functions (RBF), multiple layer perceptrons (MLP) and support vector machines (SVM). In this work 60699 bushings were classified based on ten criteria. Classification was done based on a majority vote. The work proposes the application of neural networks with particle swarm optimisation (PSO) and genetic algorithms (GA) to compensate for missing data in classifying high voltage bushings. The work also proposes the application of fuzzy set theory (FST) to diagnose the condition of high voltage bushings. The relevance and redundancy detection methods were able to prune the redundant measured variables and accurately diagnose the condition of the bushing with fewer variables. Experimental results from bushings that were evaluated in the field verified the simulations. The results of this work can help to develop real-time monitoring and decision making tools that combine information from chemical, electrical and mechanical measurements taken from bushings." @default.
- W2100846522 created "2016-06-24" @default.
- W2100846522 creator A5056381816 @default.
- W2100846522 date "2008-06-20" @default.
- W2100846522 modified "2023-09-27" @default.
- W2100846522 title "Bushing diagnosis using artificial intelligence and dissolved gas analysis" @default.
- W2100846522 cites W101663867 @default.
- W2100846522 cites W122763280 @default.
- W2100846522 cites W1483284482 @default.
- W2100846522 cites W1490095204 @default.
- W2100846522 cites W1497256448 @default.
- W2100846522 cites W1509472805 @default.
- W2100846522 cites W1534707631 @default.
- W2100846522 cites W1542808721 @default.
- W2100846522 cites W1544324307 @default.
- W2100846522 cites W1548662772 @default.
- W2100846522 cites W1554663460 @default.
- W2100846522 cites W1557207449 @default.
- W2100846522 cites W1562402498 @default.
- W2100846522 cites W1562919956 @default.
- W2100846522 cites W1563088657 @default.
- W2100846522 cites W1575805520 @default.
- W2100846522 cites W1594171446 @default.
- W2100846522 cites W1598133101 @default.
- W2100846522 cites W1869391892 @default.
- W2100846522 cites W1972536405 @default.
- W2100846522 cites W1986565402 @default.
- W2100846522 cites W1992176519 @default.
- W2100846522 cites W2017257315 @default.
- W2100846522 cites W2017900294 @default.
- W2100846522 cites W2018448738 @default.
- W2100846522 cites W2026635907 @default.
- W2100846522 cites W2027976520 @default.
- W2100846522 cites W2041035762 @default.
- W2100846522 cites W2041280856 @default.
- W2100846522 cites W2041545414 @default.
- W2100846522 cites W2051812123 @default.
- W2100846522 cites W2060542838 @default.
- W2100846522 cites W2065442164 @default.
- W2100846522 cites W2069738460 @default.
- W2100846522 cites W2077402572 @default.
- W2100846522 cites W2087070363 @default.
- W2100846522 cites W2094077483 @default.
- W2100846522 cites W2103496339 @default.
- W2100846522 cites W2108384452 @default.
- W2100846522 cites W2111532873 @default.
- W2100846522 cites W2121142787 @default.
- W2100846522 cites W2122538988 @default.
- W2100846522 cites W2124660489 @default.
- W2100846522 cites W2131463738 @default.
- W2100846522 cites W2132536544 @default.
- W2100846522 cites W2135346934 @default.
- W2100846522 cites W2137983211 @default.
- W2100846522 cites W2140190241 @default.
- W2100846522 cites W2142183404 @default.
- W2100846522 cites W2143799301 @default.
- W2100846522 cites W2149969849 @default.
- W2100846522 cites W2155136024 @default.
- W2100846522 cites W2169101361 @default.
- W2100846522 cites W2187471314 @default.
- W2100846522 cites W22297218 @default.
- W2100846522 cites W2256578114 @default.
- W2100846522 cites W2273219708 @default.
- W2100846522 cites W2500846359 @default.
- W2100846522 cites W2912565176 @default.
- W2100846522 cites W2989964606 @default.
- W2100846522 cites W3146803896 @default.
- W2100846522 cites W3148116038 @default.
- W2100846522 cites W97256294 @default.
- W2100846522 hasPublicationYear "2008" @default.
- W2100846522 type Work @default.
- W2100846522 sameAs 2100846522 @default.
- W2100846522 citedByCount "0" @default.
- W2100846522 crossrefType "dissertation" @default.
- W2100846522 hasAuthorship W2100846522A5056381816 @default.
- W2100846522 hasConcept C119599485 @default.
- W2100846522 hasConcept C119857082 @default.
- W2100846522 hasConcept C12267149 @default.
- W2100846522 hasConcept C124101348 @default.
- W2100846522 hasConcept C127413603 @default.
- W2100846522 hasConcept C153180895 @default.
- W2100846522 hasConcept C154945302 @default.
- W2100846522 hasConcept C165801399 @default.
- W2100846522 hasConcept C181335627 @default.
- W2100846522 hasConcept C41008148 @default.
- W2100846522 hasConcept C50644808 @default.
- W2100846522 hasConcept C66322947 @default.
- W2100846522 hasConcept C81818771 @default.
- W2100846522 hasConceptScore W2100846522C119599485 @default.
- W2100846522 hasConceptScore W2100846522C119857082 @default.
- W2100846522 hasConceptScore W2100846522C12267149 @default.
- W2100846522 hasConceptScore W2100846522C124101348 @default.
- W2100846522 hasConceptScore W2100846522C127413603 @default.
- W2100846522 hasConceptScore W2100846522C153180895 @default.
- W2100846522 hasConceptScore W2100846522C154945302 @default.
- W2100846522 hasConceptScore W2100846522C165801399 @default.
- W2100846522 hasConceptScore W2100846522C181335627 @default.
- W2100846522 hasConceptScore W2100846522C41008148 @default.
- W2100846522 hasConceptScore W2100846522C50644808 @default.
- W2100846522 hasConceptScore W2100846522C66322947 @default.