Matches in SemOpenAlex for { <https://semopenalex.org/work/W2100996838> ?p ?o ?g. }
- W2100996838 endingPage "1242" @default.
- W2100996838 startingPage "1231" @default.
- W2100996838 abstract "This paper presents dynamic neural-network-based model-predictive control (MPC) structure for a baker's yeast drying process. Mathematical model consists of two partial nonlinear differential equations that are obtained from heat and mass balances inside dried granules. The drying curves that are obtained from granule-based model were used as training data for neural network (NN) models. The target is to predict the moisture content and product activity, which are very important parameters in drying process, for different horizon values. Genetic-based search algorithm determines the optimal drying profile by solving optimization problem in MPC. As a result of the performance evaluation of the proposed control structure, which is compared with the model based on nonlinear partial differential equation (PDE) and with feedforward neural network (FFN) models, it is particularly satisfactory for the drying process of a baker's yeast." @default.
- W2100996838 created "2016-06-24" @default.
- W2100996838 creator A5065478572 @default.
- W2100996838 creator A5070639012 @default.
- W2100996838 creator A5090818533 @default.
- W2100996838 date "2008-07-01" @default.
- W2100996838 modified "2023-10-01" @default.
- W2100996838 title "Dynamic Neural-Network-Based Model-Predictive Control of an Industrial Baker's Yeast Drying Process" @default.
- W2100996838 cites W1498436455 @default.
- W2100996838 cites W1965692103 @default.
- W2100996838 cites W1982806664 @default.
- W2100996838 cites W1985770579 @default.
- W2100996838 cites W2011068535 @default.
- W2100996838 cites W2014863018 @default.
- W2100996838 cites W2019341732 @default.
- W2100996838 cites W2022319283 @default.
- W2100996838 cites W2023169435 @default.
- W2100996838 cites W2028604898 @default.
- W2100996838 cites W2032220852 @default.
- W2100996838 cites W2034237016 @default.
- W2100996838 cites W2039165834 @default.
- W2100996838 cites W2070708649 @default.
- W2100996838 cites W2079147138 @default.
- W2100996838 cites W2081131069 @default.
- W2100996838 cites W2083476964 @default.
- W2100996838 cites W2084590021 @default.
- W2100996838 cites W2087070363 @default.
- W2100996838 cites W2098232303 @default.
- W2100996838 cites W2107620301 @default.
- W2100996838 cites W2110873143 @default.
- W2100996838 cites W2113390735 @default.
- W2100996838 cites W2114053544 @default.
- W2100996838 cites W2118090562 @default.
- W2100996838 cites W2121879400 @default.
- W2100996838 cites W2125592635 @default.
- W2100996838 cites W2148111848 @default.
- W2100996838 cites W2152342584 @default.
- W2100996838 cites W2155399784 @default.
- W2100996838 cites W2256578114 @default.
- W2100996838 cites W4249362226 @default.
- W2100996838 cites W4254816979 @default.
- W2100996838 doi "https://doi.org/10.1109/tnn.2008.2000205" @default.
- W2100996838 hasPublicationYear "2008" @default.
- W2100996838 type Work @default.
- W2100996838 sameAs 2100996838 @default.
- W2100996838 citedByCount "55" @default.
- W2100996838 countsByYear W21009968382012 @default.
- W2100996838 countsByYear W21009968382013 @default.
- W2100996838 countsByYear W21009968382014 @default.
- W2100996838 countsByYear W21009968382015 @default.
- W2100996838 countsByYear W21009968382016 @default.
- W2100996838 countsByYear W21009968382017 @default.
- W2100996838 countsByYear W21009968382018 @default.
- W2100996838 countsByYear W21009968382019 @default.
- W2100996838 countsByYear W21009968382021 @default.
- W2100996838 countsByYear W21009968382022 @default.
- W2100996838 countsByYear W21009968382023 @default.
- W2100996838 crossrefType "journal-article" @default.
- W2100996838 hasAuthorship W2100996838A5065478572 @default.
- W2100996838 hasAuthorship W2100996838A5070639012 @default.
- W2100996838 hasAuthorship W2100996838A5090818533 @default.
- W2100996838 hasConcept C111919701 @default.
- W2100996838 hasConcept C121332964 @default.
- W2100996838 hasConcept C126255220 @default.
- W2100996838 hasConcept C127413603 @default.
- W2100996838 hasConcept C133731056 @default.
- W2100996838 hasConcept C134306372 @default.
- W2100996838 hasConcept C154945302 @default.
- W2100996838 hasConcept C155386361 @default.
- W2100996838 hasConcept C158622935 @default.
- W2100996838 hasConcept C172205157 @default.
- W2100996838 hasConcept C186060115 @default.
- W2100996838 hasConcept C2775924081 @default.
- W2100996838 hasConcept C33923547 @default.
- W2100996838 hasConcept C38858127 @default.
- W2100996838 hasConcept C41008148 @default.
- W2100996838 hasConcept C47446073 @default.
- W2100996838 hasConcept C47702885 @default.
- W2100996838 hasConcept C50644808 @default.
- W2100996838 hasConcept C62520636 @default.
- W2100996838 hasConcept C78045399 @default.
- W2100996838 hasConcept C86803240 @default.
- W2100996838 hasConcept C93779851 @default.
- W2100996838 hasConcept C98045186 @default.
- W2100996838 hasConceptScore W2100996838C111919701 @default.
- W2100996838 hasConceptScore W2100996838C121332964 @default.
- W2100996838 hasConceptScore W2100996838C126255220 @default.
- W2100996838 hasConceptScore W2100996838C127413603 @default.
- W2100996838 hasConceptScore W2100996838C133731056 @default.
- W2100996838 hasConceptScore W2100996838C134306372 @default.
- W2100996838 hasConceptScore W2100996838C154945302 @default.
- W2100996838 hasConceptScore W2100996838C155386361 @default.
- W2100996838 hasConceptScore W2100996838C158622935 @default.
- W2100996838 hasConceptScore W2100996838C172205157 @default.
- W2100996838 hasConceptScore W2100996838C186060115 @default.
- W2100996838 hasConceptScore W2100996838C2775924081 @default.
- W2100996838 hasConceptScore W2100996838C33923547 @default.
- W2100996838 hasConceptScore W2100996838C38858127 @default.