Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101002008> ?p ?o ?g. }
- W2101002008 endingPage "15885" @default.
- W2101002008 startingPage "15874" @default.
- W2101002008 abstract "The nuclear factor of activated T cells (NFAT) group of transcription factors regulates gene expression in immune and non-immune cells. NFAT-mediated gene transcription is orchestrated, in part, by formation of a composite regulatory element. Here we demonstrate that NFAT interacts with transcription factor CCAAT/enhancer-binding protein (C/EBP) to form a composite enhancer complex, to potentiate expression of the peroxisome proliferator-activated receptor-γ2 gene. Formation of a ternary NFAT·C/EBP·DNA complex is required for the transcriptional cooperation. A similar NFAT·C/EBP composite element is found in the regulatory region of the insulin-like growth factor 2, angiotensin-converting enzyme homolog, and transcription factor POU4F3 genes. Thus, the NFAT·C/EBP composite element represents a novel regulatory enhancer to direct NFAT-mediated gene transcription. The nuclear factor of activated T cells (NFAT) group of transcription factors regulates gene expression in immune and non-immune cells. NFAT-mediated gene transcription is orchestrated, in part, by formation of a composite regulatory element. Here we demonstrate that NFAT interacts with transcription factor CCAAT/enhancer-binding protein (C/EBP) to form a composite enhancer complex, to potentiate expression of the peroxisome proliferator-activated receptor-γ2 gene. Formation of a ternary NFAT·C/EBP·DNA complex is required for the transcriptional cooperation. A similar NFAT·C/EBP composite element is found in the regulatory region of the insulin-like growth factor 2, angiotensin-converting enzyme homolog, and transcription factor POU4F3 genes. Thus, the NFAT·C/EBP composite element represents a novel regulatory enhancer to direct NFAT-mediated gene transcription. nuclear factor of activated T cells CCAAT/enhancer-binding protein antigen receptor-responsive element interleukin phorbol 12-myristate 13-acetate insulin-like growth factor 2 peroxisome proliferator-activated receptor-γ2 angiotensin-converting enzyme homolog basic leucine zipper DNase I-hypersensitive sites baby hamster kidney glutathione S-transferase Nuclear factor of activated T cells (NFAT)1 was first identified as an important regulator for cytokine gene expression (1Rao A. Luo C. Hogan P.G. Annu. Rev. Immunol. 1997; 15: 707-747Crossref PubMed Scopus (2203) Google Scholar, 2Crabtree G.R. J. Biol. Chem. 2001; 276: 2313-2316Abstract Full Text Full Text PDF PubMed Scopus (377) Google Scholar). Subsequent isolation of cDNAs reveals a broad distribution of NFAT in multiple tissues. For example, NFAT regulates expression of type 1 inositol 1,4,5-trisphosphate receptor and is implicated in learning and memory (3Graef I.A. Mermelstein P.G. Stankunas K. Neilson J.R. Deisseroth K. Tsien R.W. Crabtree G.R. Nature. 1999; 401: 703-708Crossref PubMed Scopus (451) Google Scholar). NFAT regulates expression of b-type natriuretic peptide during cardiac hypertrophy (4Molkentin J.D. Lu J.R. Antos C.L. Markham B. Richardson J. Robbins J. Grant S.R. Olson E.N. Cell. 1998; 93: 215-228Abstract Full Text Full Text PDF PubMed Scopus (2191) Google Scholar). NFAT also modulates skeletal muscle fiber type by directing selective gene expression in slow oxidative myofibers (e.g. myoglobin gene and slow fiber-specific troponin I gene) (5Chin E.R. Olson E.N. Richardson J.A. Yang Q. Humphries C. Shelton J.M. Wu H. Zhu W. Bassel-Duby R. Williams R.S. Genes Dev. 1998; 12: 2499-2509Crossref PubMed Scopus (824) Google Scholar). NFAT also regulates expression of fatty acid-binding protein and transcription factor peroxisome proliferator-activated receptor-γ2 (PPARγ2) during adipogenesis (6Ho I.C. Kim J.H. Rooney J.W. Spiegelman B.M. Glimcher L.H. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 15537-15541Crossref PubMed Scopus (97) Google Scholar,7Yang T.T. Xiong Q. Enslen H. Davis R.J. Chow C.W. Mol. Cell. Biol. 2002; 22: 3892-3904Crossref PubMed Scopus (145) Google Scholar). Recent microarray analyses have further revealed a wealth of novel NFAT target genes (8Macian F. Garcia-Cozar F. Im S.H. Horton H.F. Byrne M.C. Rao A. Cell. 2002; 109: 719-731Abstract Full Text Full Text PDF PubMed Scopus (548) Google Scholar, 9Graef I.A. Chen F. Chen L. Kuo A. Crabtree G.R. Cell. 2001; 105: 863-875Abstract Full Text Full Text PDF PubMed Scopus (354) Google Scholar, 10Feske S. Giltnane J. Dolmetsch R. Staudt L.M. Rao A. Nat. Immunol. 2001; 2: 316-324Crossref PubMed Scopus (495) Google Scholar). As elucidation of the physiological functions of NFAT progresses, many more novel NFAT target genes will be identified. However, the molecular basis that governs the expression of these NFAT target genes remains to be determined.NFAT interacts with transcription factor AP-1 (Fos and Jun proteins) to form a cooperative composite enhancer (NFAT·AP-1) and to regulate expression of many cytokine genes (11Macian F. Lopez-Rodriguez C. Rao A. Oncogene. 2001; 20: 2476-2489Crossref PubMed Scopus (610) Google Scholar). The cooperative induction is mediated, in part, by protein-protein and protein-DNA interactions. For example, the well characterized antigen receptor-responsive element (ARRE) from the interleukin (IL)-2 gene contains binding sites for NFAT and AP-1 (12Northrop J.P. Ullman K.S. Crabtree G.R. J. Biol. Chem. 1993; 268: 2917-2923Abstract Full Text PDF PubMed Google Scholar, 13Durand D.B. Shaw J.P. Bush M.R. Replogle R.E. Belagaje R. Crabtree G.R. Mol. Cell. Biol. 1988; 8: 1715-1724Crossref PubMed Scopus (374) Google Scholar, 14Jain J. McCaffrey P.G. Valge-Archer V.E. Rao A. Nature. 1992; 356: 801-804Crossref PubMed Scopus (427) Google Scholar). The DNA binding domains of NFAT and AP-1 are required for the cooperative interaction on the ARRE enhancer (15Macian F. Garcia-Rodriguez C. Rao A. EMBO J. 2000; 19: 4783-4795Crossref PubMed Scopus (258) Google Scholar, 16Luo C. Burgeon E. Rao A. J. Exp. Med. 1996; 184: 141-147Crossref PubMed Scopus (86) Google Scholar). Structural analysis reveals multiple contacts between the DNA binding domains of NFAT and AP-1 (17Sun L.J. Peterson B.R. Verdine G.L. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 4919-4924Crossref PubMed Scopus (42) Google Scholar, 18Zhou P. Sun L.J. Dotsch V. Wagner G. Verdine G.L. Cell. 1998; 92: 687-696Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar, 19Chen L. Glover J.N. Hogan P.G. Rao A. Harrison S.C. Nature. 1998; 392: 42-48Crossref PubMed Scopus (410) Google Scholar). Conserved residues are responsible for the protein-protein and protein-DNA interactions. Thus, intimate associations between NFAT, AP-1, and DNA are necessary for the transcription cooperation of the IL-2 gene.Transcription factor peroxisome proliferator-activated receptor-γ2 (PPARγ2) plays an important role in adipogenesis (20MacDougald O.A. Lane M.D. Annu. Rev. Biochem. 1995; 64: 345-373Crossref PubMed Scopus (933) Google Scholar, 21Cowherd R.M. Lyle R.E. McGehee Jr., R.E. Semin. Cell Dev. Biol. 1999; 10: 3-10Crossref PubMed Scopus (235) Google Scholar, 22Tontonoz P. Hu E. Spiegelman B.M. Curr. Opin. Genet. & Dev. 1995; 5: 571-576Crossref PubMed Scopus (402) Google Scholar, 23Rosen E.D. Spiegelman B.M. J. Biol. Chem. 2001; 276: 37731-37734Abstract Full Text Full Text PDF PubMed Scopus (1068) Google Scholar). Multiple transcription factors have been shown to regulate the PPARγ2 gene expression. For example, members of the CCAAT/enhancer-binding protein (C/EBP) family induce expression of PPARγ2 during adipocyte differentiation (24Wu Z. Bucher N.L. Farmer S.R. Mol. Cell. Biol. 1996; 16: 4128-4136Crossref PubMed Google Scholar, 25Wu Z. Xie Y. Bucher N.L. Farmer S.R. Genes Dev. 1995; 9: 2350-2363Crossref PubMed Scopus (475) Google Scholar). Several C/EBP-binding elements have been identified on the PPARγ2 gene promoter (26Zhu Y. Qi C. Korenberg J.R. Chen X.N. Noya D. Rao M.S. Reddy J.K. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 7921-7925Crossref PubMed Scopus (598) Google Scholar, 27Fajas L. Auboeuf D. Raspe E. Schoonjans K. Lefebvre A.M. Saladin R. Najib J. Laville M. Fruchart J.C. Deeb S. Vidal-Puig A. Flier J. Briggs M.R. Staels B. Vidal H. Auwerx J. J. Biol. Chem. 1997; 272: 18779-18789Abstract Full Text Full Text PDF PubMed Scopus (1075) Google Scholar, 28Yun Z. Maecker H.L. Johnson R.S. Giaccia A.J. Dev. Cell. 2002; 2: 331-341Abstract Full Text Full Text PDF PubMed Scopus (377) Google Scholar, 29Shi X.M. Blair H.C. Yang X. McDonald J.M. Cao X. J. Cell. Biochem. 2000; 76: 518-527Crossref PubMed Scopus (101) Google Scholar, 30Elberg G. Gimble J.M. Tsai S.Y. J. Biol. Chem. 2000; 275: 27815-27822Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar). Recently, two distinctive NFAT-binding sites (proximal and distal) are identified on the PPARγ2 gene (7Yang T.T. Xiong Q. Enslen H. Davis R.J. Chow C.W. Mol. Cell. Biol. 2002; 22: 3892-3904Crossref PubMed Scopus (145) Google Scholar). The NFAT- and C/EBP-binding sites are located in the immediate upstream regulatory region of the PPARγ2 promoter. Whether NFAT cooperates with C/EBP to regulate the PPARγ2 gene expression remains uncertain.The significance of the PPARγ2 NFAT regulatory elements is further implicated by recent DNase I-hypersensitive site studies (31Ren D. Collingwood T.N. Rebar E.J. Wolffe A.P. Camp H.S. Genes Dev. 2002; 16: 27-32Crossref PubMed Scopus (302) Google Scholar). Two DNase I-hypersensitive sites (DHS1 and DHS2) are found in the PPARγ2 gene. DNase I-hypersensitive sites represent regions that are “accessible” for transcription factor binding in the nucleosome-packed chromatin (32Veenstra G.J. Wolffe A.P. Trends Biochem. Sci. 2001; 26: 665-671Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar, 33Felsenfeld G. Boyes J. Chung J. Clark D. Studitsky V. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 9384-9388Crossref PubMed Scopus (156) Google Scholar, 34Elgin S.C. Cell. 1981; 27: 413-415Abstract Full Text PDF PubMed Scopus (243) Google Scholar, 35Krebs J.E. Peterson C.L. Crit. Rev. Eukaryotic Gene Expr. 2000; 10: 1-12Crossref PubMed Google Scholar). Binding of transcription factors to the DNase I-hypersensitive sites may facilitate chromatin rearrangement and/or transcriptional activation of promoters that are actively engaged in gene expression. Thus, identification of proteins that bind to DNase I-hypersensitive sites is important to understand transcriptional regulation. The PPARγ2 distal NFAT element is located between the DHS1 and the DHS2 DNase I-hypersensitive site. The PPARγ2-proximal NFAT element is located within DHS1. The proximity of these NFAT elements to the DNase I-hypersensitive sites suggests that understanding the molecular basis of NFAT-mediated transcription will shed new light on the regulation of PPARγ2 gene.The purpose of this study is to examine the molecular basis of NFAT-mediated gene expression. We report that NFAT cooperates with C/EBP to regulate PPARγ2 gene expression. The transcription cooperation is mediated, in part, by the formation of a composite NFAT·C/EBP complex on the PPARγ2-proximal NFAT element. Promoter analysis reveals that a similar NFAT·C/EBP composite element regulates transcription of insulin-like growth factor 2, angiotensin-converting enzyme homolog, and transcription factor POU4F3 genes. Thus, the NFAT·C/EBP complex represents a novel composite regulatory element to direct NFAT-mediated gene expression. Nuclear factor of activated T cells (NFAT)1 was first identified as an important regulator for cytokine gene expression (1Rao A. Luo C. Hogan P.G. Annu. Rev. Immunol. 1997; 15: 707-747Crossref PubMed Scopus (2203) Google Scholar, 2Crabtree G.R. J. Biol. Chem. 2001; 276: 2313-2316Abstract Full Text Full Text PDF PubMed Scopus (377) Google Scholar). Subsequent isolation of cDNAs reveals a broad distribution of NFAT in multiple tissues. For example, NFAT regulates expression of type 1 inositol 1,4,5-trisphosphate receptor and is implicated in learning and memory (3Graef I.A. Mermelstein P.G. Stankunas K. Neilson J.R. Deisseroth K. Tsien R.W. Crabtree G.R. Nature. 1999; 401: 703-708Crossref PubMed Scopus (451) Google Scholar). NFAT regulates expression of b-type natriuretic peptide during cardiac hypertrophy (4Molkentin J.D. Lu J.R. Antos C.L. Markham B. Richardson J. Robbins J. Grant S.R. Olson E.N. Cell. 1998; 93: 215-228Abstract Full Text Full Text PDF PubMed Scopus (2191) Google Scholar). NFAT also modulates skeletal muscle fiber type by directing selective gene expression in slow oxidative myofibers (e.g. myoglobin gene and slow fiber-specific troponin I gene) (5Chin E.R. Olson E.N. Richardson J.A. Yang Q. Humphries C. Shelton J.M. Wu H. Zhu W. Bassel-Duby R. Williams R.S. Genes Dev. 1998; 12: 2499-2509Crossref PubMed Scopus (824) Google Scholar). NFAT also regulates expression of fatty acid-binding protein and transcription factor peroxisome proliferator-activated receptor-γ2 (PPARγ2) during adipogenesis (6Ho I.C. Kim J.H. Rooney J.W. Spiegelman B.M. Glimcher L.H. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 15537-15541Crossref PubMed Scopus (97) Google Scholar,7Yang T.T. Xiong Q. Enslen H. Davis R.J. Chow C.W. Mol. Cell. Biol. 2002; 22: 3892-3904Crossref PubMed Scopus (145) Google Scholar). Recent microarray analyses have further revealed a wealth of novel NFAT target genes (8Macian F. Garcia-Cozar F. Im S.H. Horton H.F. Byrne M.C. Rao A. Cell. 2002; 109: 719-731Abstract Full Text Full Text PDF PubMed Scopus (548) Google Scholar, 9Graef I.A. Chen F. Chen L. Kuo A. Crabtree G.R. Cell. 2001; 105: 863-875Abstract Full Text Full Text PDF PubMed Scopus (354) Google Scholar, 10Feske S. Giltnane J. Dolmetsch R. Staudt L.M. Rao A. Nat. Immunol. 2001; 2: 316-324Crossref PubMed Scopus (495) Google Scholar). As elucidation of the physiological functions of NFAT progresses, many more novel NFAT target genes will be identified. However, the molecular basis that governs the expression of these NFAT target genes remains to be determined. NFAT interacts with transcription factor AP-1 (Fos and Jun proteins) to form a cooperative composite enhancer (NFAT·AP-1) and to regulate expression of many cytokine genes (11Macian F. Lopez-Rodriguez C. Rao A. Oncogene. 2001; 20: 2476-2489Crossref PubMed Scopus (610) Google Scholar). The cooperative induction is mediated, in part, by protein-protein and protein-DNA interactions. For example, the well characterized antigen receptor-responsive element (ARRE) from the interleukin (IL)-2 gene contains binding sites for NFAT and AP-1 (12Northrop J.P. Ullman K.S. Crabtree G.R. J. Biol. Chem. 1993; 268: 2917-2923Abstract Full Text PDF PubMed Google Scholar, 13Durand D.B. Shaw J.P. Bush M.R. Replogle R.E. Belagaje R. Crabtree G.R. Mol. Cell. Biol. 1988; 8: 1715-1724Crossref PubMed Scopus (374) Google Scholar, 14Jain J. McCaffrey P.G. Valge-Archer V.E. Rao A. Nature. 1992; 356: 801-804Crossref PubMed Scopus (427) Google Scholar). The DNA binding domains of NFAT and AP-1 are required for the cooperative interaction on the ARRE enhancer (15Macian F. Garcia-Rodriguez C. Rao A. EMBO J. 2000; 19: 4783-4795Crossref PubMed Scopus (258) Google Scholar, 16Luo C. Burgeon E. Rao A. J. Exp. Med. 1996; 184: 141-147Crossref PubMed Scopus (86) Google Scholar). Structural analysis reveals multiple contacts between the DNA binding domains of NFAT and AP-1 (17Sun L.J. Peterson B.R. Verdine G.L. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 4919-4924Crossref PubMed Scopus (42) Google Scholar, 18Zhou P. Sun L.J. Dotsch V. Wagner G. Verdine G.L. Cell. 1998; 92: 687-696Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar, 19Chen L. Glover J.N. Hogan P.G. Rao A. Harrison S.C. Nature. 1998; 392: 42-48Crossref PubMed Scopus (410) Google Scholar). Conserved residues are responsible for the protein-protein and protein-DNA interactions. Thus, intimate associations between NFAT, AP-1, and DNA are necessary for the transcription cooperation of the IL-2 gene. Transcription factor peroxisome proliferator-activated receptor-γ2 (PPARγ2) plays an important role in adipogenesis (20MacDougald O.A. Lane M.D. Annu. Rev. Biochem. 1995; 64: 345-373Crossref PubMed Scopus (933) Google Scholar, 21Cowherd R.M. Lyle R.E. McGehee Jr., R.E. Semin. Cell Dev. Biol. 1999; 10: 3-10Crossref PubMed Scopus (235) Google Scholar, 22Tontonoz P. Hu E. Spiegelman B.M. Curr. Opin. Genet. & Dev. 1995; 5: 571-576Crossref PubMed Scopus (402) Google Scholar, 23Rosen E.D. Spiegelman B.M. J. Biol. Chem. 2001; 276: 37731-37734Abstract Full Text Full Text PDF PubMed Scopus (1068) Google Scholar). Multiple transcription factors have been shown to regulate the PPARγ2 gene expression. For example, members of the CCAAT/enhancer-binding protein (C/EBP) family induce expression of PPARγ2 during adipocyte differentiation (24Wu Z. Bucher N.L. Farmer S.R. Mol. Cell. Biol. 1996; 16: 4128-4136Crossref PubMed Google Scholar, 25Wu Z. Xie Y. Bucher N.L. Farmer S.R. Genes Dev. 1995; 9: 2350-2363Crossref PubMed Scopus (475) Google Scholar). Several C/EBP-binding elements have been identified on the PPARγ2 gene promoter (26Zhu Y. Qi C. Korenberg J.R. Chen X.N. Noya D. Rao M.S. Reddy J.K. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 7921-7925Crossref PubMed Scopus (598) Google Scholar, 27Fajas L. Auboeuf D. Raspe E. Schoonjans K. Lefebvre A.M. Saladin R. Najib J. Laville M. Fruchart J.C. Deeb S. Vidal-Puig A. Flier J. Briggs M.R. Staels B. Vidal H. Auwerx J. J. Biol. Chem. 1997; 272: 18779-18789Abstract Full Text Full Text PDF PubMed Scopus (1075) Google Scholar, 28Yun Z. Maecker H.L. Johnson R.S. Giaccia A.J. Dev. Cell. 2002; 2: 331-341Abstract Full Text Full Text PDF PubMed Scopus (377) Google Scholar, 29Shi X.M. Blair H.C. Yang X. McDonald J.M. Cao X. J. Cell. Biochem. 2000; 76: 518-527Crossref PubMed Scopus (101) Google Scholar, 30Elberg G. Gimble J.M. Tsai S.Y. J. Biol. Chem. 2000; 275: 27815-27822Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar). Recently, two distinctive NFAT-binding sites (proximal and distal) are identified on the PPARγ2 gene (7Yang T.T. Xiong Q. Enslen H. Davis R.J. Chow C.W. Mol. Cell. Biol. 2002; 22: 3892-3904Crossref PubMed Scopus (145) Google Scholar). The NFAT- and C/EBP-binding sites are located in the immediate upstream regulatory region of the PPARγ2 promoter. Whether NFAT cooperates with C/EBP to regulate the PPARγ2 gene expression remains uncertain. The significance of the PPARγ2 NFAT regulatory elements is further implicated by recent DNase I-hypersensitive site studies (31Ren D. Collingwood T.N. Rebar E.J. Wolffe A.P. Camp H.S. Genes Dev. 2002; 16: 27-32Crossref PubMed Scopus (302) Google Scholar). Two DNase I-hypersensitive sites (DHS1 and DHS2) are found in the PPARγ2 gene. DNase I-hypersensitive sites represent regions that are “accessible” for transcription factor binding in the nucleosome-packed chromatin (32Veenstra G.J. Wolffe A.P. Trends Biochem. Sci. 2001; 26: 665-671Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar, 33Felsenfeld G. Boyes J. Chung J. Clark D. Studitsky V. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 9384-9388Crossref PubMed Scopus (156) Google Scholar, 34Elgin S.C. Cell. 1981; 27: 413-415Abstract Full Text PDF PubMed Scopus (243) Google Scholar, 35Krebs J.E. Peterson C.L. Crit. Rev. Eukaryotic Gene Expr. 2000; 10: 1-12Crossref PubMed Google Scholar). Binding of transcription factors to the DNase I-hypersensitive sites may facilitate chromatin rearrangement and/or transcriptional activation of promoters that are actively engaged in gene expression. Thus, identification of proteins that bind to DNase I-hypersensitive sites is important to understand transcriptional regulation. The PPARγ2 distal NFAT element is located between the DHS1 and the DHS2 DNase I-hypersensitive site. The PPARγ2-proximal NFAT element is located within DHS1. The proximity of these NFAT elements to the DNase I-hypersensitive sites suggests that understanding the molecular basis of NFAT-mediated transcription will shed new light on the regulation of PPARγ2 gene. The purpose of this study is to examine the molecular basis of NFAT-mediated gene expression. We report that NFAT cooperates with C/EBP to regulate PPARγ2 gene expression. The transcription cooperation is mediated, in part, by the formation of a composite NFAT·C/EBP complex on the PPARγ2-proximal NFAT element. Promoter analysis reveals that a similar NFAT·C/EBP composite element regulates transcription of insulin-like growth factor 2, angiotensin-converting enzyme homolog, and transcription factor POU4F3 genes. Thus, the NFAT·C/EBP complex represents a novel composite regulatory element to direct NFAT-mediated gene expression. We thank Drs. M. P. Clark, T. Hoey, P. F. Johnson, T. Soderling, and B. M. Spiegelman for providing reagents. We thank Drs. R. J. Davis, M. Rincón, and C. S. Rubin for their critical reading of the manuscript." @default.
- W2101002008 created "2016-06-24" @default.
- W2101002008 creator A5049868751 @default.
- W2101002008 creator A5052548383 @default.
- W2101002008 date "2003-05-01" @default.
- W2101002008 modified "2023-09-30" @default.
- W2101002008 title "Transcription Cooperation by NFAT·C/EBP Composite Enhancer Complex" @default.
- W2101002008 cites W1490068297 @default.
- W2101002008 cites W1530082693 @default.
- W2101002008 cites W1601157315 @default.
- W2101002008 cites W161652132 @default.
- W2101002008 cites W1847275787 @default.
- W2101002008 cites W1965861063 @default.
- W2101002008 cites W1982323880 @default.
- W2101002008 cites W1991210089 @default.
- W2101002008 cites W1993300842 @default.
- W2101002008 cites W1995322263 @default.
- W2101002008 cites W2000352591 @default.
- W2101002008 cites W2000476522 @default.
- W2101002008 cites W2005994488 @default.
- W2101002008 cites W2007774889 @default.
- W2101002008 cites W2009475513 @default.
- W2101002008 cites W2009764033 @default.
- W2101002008 cites W2012255113 @default.
- W2101002008 cites W2013325898 @default.
- W2101002008 cites W2020649739 @default.
- W2101002008 cites W2022139382 @default.
- W2101002008 cites W2023926363 @default.
- W2101002008 cites W2026181894 @default.
- W2101002008 cites W2031272783 @default.
- W2101002008 cites W2034200840 @default.
- W2101002008 cites W2038600671 @default.
- W2101002008 cites W2039766781 @default.
- W2101002008 cites W2046833545 @default.
- W2101002008 cites W2047198875 @default.
- W2101002008 cites W2047842452 @default.
- W2101002008 cites W2048789360 @default.
- W2101002008 cites W2053010478 @default.
- W2101002008 cites W2054910860 @default.
- W2101002008 cites W2061029168 @default.
- W2101002008 cites W2061851471 @default.
- W2101002008 cites W2062469526 @default.
- W2101002008 cites W2065667627 @default.
- W2101002008 cites W2066524854 @default.
- W2101002008 cites W2067929063 @default.
- W2101002008 cites W2068716929 @default.
- W2101002008 cites W2069918637 @default.
- W2101002008 cites W2070145205 @default.
- W2101002008 cites W2072770020 @default.
- W2101002008 cites W2076485183 @default.
- W2101002008 cites W2076956056 @default.
- W2101002008 cites W2081880451 @default.
- W2101002008 cites W2082502466 @default.
- W2101002008 cites W2088264073 @default.
- W2101002008 cites W2091346116 @default.
- W2101002008 cites W2093217651 @default.
- W2101002008 cites W2101496732 @default.
- W2101002008 cites W2102250325 @default.
- W2101002008 cites W2103450164 @default.
- W2101002008 cites W2104582299 @default.
- W2101002008 cites W2104987037 @default.
- W2101002008 cites W2109231147 @default.
- W2101002008 cites W2109453374 @default.
- W2101002008 cites W2110396329 @default.
- W2101002008 cites W2117989242 @default.
- W2101002008 cites W2121270780 @default.
- W2101002008 cites W2124047072 @default.
- W2101002008 cites W2136679192 @default.
- W2101002008 cites W2140707292 @default.
- W2101002008 cites W2142022809 @default.
- W2101002008 cites W2142638534 @default.
- W2101002008 cites W2143522905 @default.
- W2101002008 cites W2145303230 @default.
- W2101002008 cites W2146963242 @default.
- W2101002008 cites W2148244700 @default.
- W2101002008 cites W2150287216 @default.
- W2101002008 cites W2156433522 @default.
- W2101002008 cites W2159230151 @default.
- W2101002008 cites W2161113731 @default.
- W2101002008 cites W2162481722 @default.
- W2101002008 cites W2165626613 @default.
- W2101002008 cites W2167244099 @default.
- W2101002008 cites W2169224393 @default.
- W2101002008 cites W2176176727 @default.
- W2101002008 cites W2327006078 @default.
- W2101002008 cites W4253702721 @default.
- W2101002008 doi "https://doi.org/10.1074/jbc.m211560200" @default.
- W2101002008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12606546" @default.
- W2101002008 hasPublicationYear "2003" @default.
- W2101002008 type Work @default.
- W2101002008 sameAs 2101002008 @default.
- W2101002008 citedByCount "55" @default.
- W2101002008 countsByYear W21010020082012 @default.
- W2101002008 countsByYear W21010020082013 @default.
- W2101002008 countsByYear W21010020082014 @default.
- W2101002008 countsByYear W21010020082015 @default.
- W2101002008 countsByYear W21010020082016 @default.
- W2101002008 countsByYear W21010020082017 @default.