Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101025665> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2101025665 abstract "Patients that suffer from loss of motor control would benefit from a brain-computer interface (BCI) that would, optimally, be noninvasive, allow multiple dimensions of control, and be controlled with quick and simple means. Ideally, the control mechanism would be natural to the patient so that little training would be required; and the device would respond to these control signals in a predictable way and on a predictable time scale. It would also be important for such a device to be usable by patients capable and incapable of making physical movements. A BCI was created that used electroencephalography (EEG). Multiple dimensions of control were achieved through the movement or motor imagery of the right hand, left hand, tongue, and right foot. The movements were non-sustained to be convenient for the user. The BCI used the 1.5 seconds of the Bereitschaftspotential prior to movement or motor imagery for classification. This could allow the BCI to execute an action on a time scale anticipated by the user. To test this BCI, eight healthy participants were fitted with 29 EEG electrodes over their sensorimotor cortex and one bipolar electrooculography electrode to detect eye movement. Each participant completed six blocks of 100 trials. A trial included visual presentation of three stimuli: a cross, an arrow, and a diamond. Participants rested during the presentation of the cross. The arrow indicated the action that the participant should perform: right hand squeeze, left hand squeeze, press of the tongue against the roof of the mouth, or right foot toe curl. The diamond indicated that the participant should execute the movement during the first three blocks; and that the participant should imagine executing the movement during the last three blocks. Trials affected by motion artifacts, in particular face muscle activity, were removed. Of the remaining data, about 80% were used to train a Bayesian classification and about 20% were used to test this classification. Prediction of the four movements reached accuracies above 150% that of random classification for both real and imagined movements. This suggests a promising future for this BCI." @default.
- W2101025665 created "2016-06-24" @default.
- W2101025665 creator A5005307199 @default.
- W2101025665 creator A5005566965 @default.
- W2101025665 creator A5016872951 @default.
- W2101025665 creator A5060718451 @default.
- W2101025665 creator A5085554845 @default.
- W2101025665 date "2007-05-01" @default.
- W2101025665 modified "2023-09-23" @default.
- W2101025665 title "Prediction of Multiple Movement Intentions from CNV Signal for Multi-Dimensional BCI" @default.
- W2101025665 cites W1973239356 @default.
- W2101025665 cites W1982900814 @default.
- W2101025665 cites W2067581217 @default.
- W2101025665 doi "https://doi.org/10.1109/iccme.2007.4382087" @default.
- W2101025665 hasPublicationYear "2007" @default.
- W2101025665 type Work @default.
- W2101025665 sameAs 2101025665 @default.
- W2101025665 citedByCount "1" @default.
- W2101025665 crossrefType "proceedings-article" @default.
- W2101025665 hasAuthorship W2101025665A5005307199 @default.
- W2101025665 hasAuthorship W2101025665A5005566965 @default.
- W2101025665 hasAuthorship W2101025665A5016872951 @default.
- W2101025665 hasAuthorship W2101025665A5060718451 @default.
- W2101025665 hasAuthorship W2101025665A5085554845 @default.
- W2101025665 hasConcept C137813230 @default.
- W2101025665 hasConcept C154945302 @default.
- W2101025665 hasConcept C15744967 @default.
- W2101025665 hasConcept C169760540 @default.
- W2101025665 hasConcept C173201364 @default.
- W2101025665 hasConcept C28490314 @default.
- W2101025665 hasConcept C31972630 @default.
- W2101025665 hasConcept C41008148 @default.
- W2101025665 hasConcept C522805319 @default.
- W2101025665 hasConcept C54808283 @default.
- W2101025665 hasConcept C71924100 @default.
- W2101025665 hasConcept C99508421 @default.
- W2101025665 hasConceptScore W2101025665C137813230 @default.
- W2101025665 hasConceptScore W2101025665C154945302 @default.
- W2101025665 hasConceptScore W2101025665C15744967 @default.
- W2101025665 hasConceptScore W2101025665C169760540 @default.
- W2101025665 hasConceptScore W2101025665C173201364 @default.
- W2101025665 hasConceptScore W2101025665C28490314 @default.
- W2101025665 hasConceptScore W2101025665C31972630 @default.
- W2101025665 hasConceptScore W2101025665C41008148 @default.
- W2101025665 hasConceptScore W2101025665C522805319 @default.
- W2101025665 hasConceptScore W2101025665C54808283 @default.
- W2101025665 hasConceptScore W2101025665C71924100 @default.
- W2101025665 hasConceptScore W2101025665C99508421 @default.
- W2101025665 hasLocation W21010256651 @default.
- W2101025665 hasOpenAccess W2101025665 @default.
- W2101025665 hasPrimaryLocation W21010256651 @default.
- W2101025665 hasRelatedWork W131149161 @default.
- W2101025665 hasRelatedWork W1999831619 @default.
- W2101025665 hasRelatedWork W2060460256 @default.
- W2101025665 hasRelatedWork W2253972181 @default.
- W2101025665 hasRelatedWork W2293981118 @default.
- W2101025665 hasRelatedWork W2774366380 @default.
- W2101025665 hasRelatedWork W2969456792 @default.
- W2101025665 hasRelatedWork W2998083925 @default.
- W2101025665 hasRelatedWork W3155355436 @default.
- W2101025665 hasRelatedWork W4200015037 @default.
- W2101025665 isParatext "false" @default.
- W2101025665 isRetracted "false" @default.
- W2101025665 magId "2101025665" @default.
- W2101025665 workType "article" @default.