Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101051817> ?p ?o ?g. }
- W2101051817 endingPage "907" @default.
- W2101051817 startingPage "892" @default.
- W2101051817 abstract "The principle of maximum entropy has played an important role in the solution of problems in which the measurements correspond to moment constraints on some many-to-one mapping h(x). In this paper we explore its role in estimation problems in which the measured data are statistical observations and moment constraints on the observation function h(x) do not exist. We conclude that: 1) For the class of likelihood problems arising in a complete-incomplete data context in which the complete data x are nonuniquely determined by the measured incomplete data y via the many-to-one mapping y = h(x), the density maximizing entropy is identical to the conditional density of the complete data given the incomplete data. This equivalence results by viewing the measurements as specifying the domain over which the density is defined, rather than as a moment constraint on h(x). 2) The identity between the maximum entropy and the conditional density results in the fact that maximum-likelihood estimates may be obtained via a joint maximization (minimization) of the entropy function (Kullback-Liebler divergence). This provides the basis for the iterative algorithm of Dempster, Laird, and Rubin [1] for the maximization of likelihood functions. 3) This iterative method is used for maximum-likelihood estimation of image parameters in emission tomography and gammaray astronomy. We demonstrate that unconstrained likelihood estimation of image intensities from finite data sets yields unstable estimates. We show how Grenander's method of sieves can be used with the iterative algorithm to remove the instability. A bandwidth sieve is introduced resulting in an estimator which is smoothed via exponential splines. 4) We also derive a recursive algorithm for the generation of Toeplitz constrained maximum-likelihood estimators which at each iteration evaluates conditional mean estimates of the lag products based on the previous estimate of the covariance, from which the updated Toeplitz covariance is generated. We prove that the sequence of Toeplitz estimators has the property that they increase in likelihood, remain in the set of positive-definite Toeplitz covariances, and has all of its limit points stable and satisfying the necessary conditions for maximizing the likelihood." @default.
- W2101051817 created "2016-06-24" @default.
- W2101051817 creator A5033151214 @default.
- W2101051817 creator A5075758745 @default.
- W2101051817 date "1987-01-01" @default.
- W2101051817 modified "2023-10-02" @default.
- W2101051817 title "The role of likelihood and entropy in incomplete-data problems: Applications to estimating point-process intensities and toeplitz constrained covariances" @default.
- W2101051817 cites W1963874202 @default.
- W2101051817 cites W1966654446 @default.
- W2101051817 cites W1977828379 @default.
- W2101051817 cites W1982890547 @default.
- W2101051817 cites W1984995781 @default.
- W2101051817 cites W1999640431 @default.
- W2101051817 cites W2003597177 @default.
- W2101051817 cites W2010584937 @default.
- W2101051817 cites W2014116058 @default.
- W2101051817 cites W2018490621 @default.
- W2101051817 cites W2021311629 @default.
- W2101051817 cites W2025556230 @default.
- W2101051817 cites W2026432438 @default.
- W2101051817 cites W2028013825 @default.
- W2101051817 cites W2032558547 @default.
- W2101051817 cites W2049032689 @default.
- W2101051817 cites W2061098171 @default.
- W2101051817 cites W2069629287 @default.
- W2101051817 cites W2078403926 @default.
- W2101051817 cites W2097704405 @default.
- W2101051817 cites W2104936830 @default.
- W2101051817 cites W2160709761 @default.
- W2101051817 cites W2163460471 @default.
- W2101051817 cites W4234848677 @default.
- W2101051817 cites W4236076432 @default.
- W2101051817 doi "https://doi.org/10.1109/proc.1987.13825" @default.
- W2101051817 hasPublicationYear "1987" @default.
- W2101051817 type Work @default.
- W2101051817 sameAs 2101051817 @default.
- W2101051817 citedByCount "132" @default.
- W2101051817 countsByYear W21010518172012 @default.
- W2101051817 countsByYear W21010518172013 @default.
- W2101051817 countsByYear W21010518172015 @default.
- W2101051817 countsByYear W21010518172016 @default.
- W2101051817 countsByYear W21010518172017 @default.
- W2101051817 countsByYear W21010518172018 @default.
- W2101051817 countsByYear W21010518172019 @default.
- W2101051817 countsByYear W21010518172020 @default.
- W2101051817 countsByYear W21010518172021 @default.
- W2101051817 countsByYear W21010518172022 @default.
- W2101051817 countsByYear W21010518172023 @default.
- W2101051817 crossrefType "journal-article" @default.
- W2101051817 hasAuthorship W2101051817A5033151214 @default.
- W2101051817 hasAuthorship W2101051817A5075758745 @default.
- W2101051817 hasConcept C105795698 @default.
- W2101051817 hasConcept C106301342 @default.
- W2101051817 hasConcept C11413529 @default.
- W2101051817 hasConcept C121332964 @default.
- W2101051817 hasConcept C126255220 @default.
- W2101051817 hasConcept C147710293 @default.
- W2101051817 hasConcept C159694833 @default.
- W2101051817 hasConcept C167928553 @default.
- W2101051817 hasConcept C171752962 @default.
- W2101051817 hasConcept C182081679 @default.
- W2101051817 hasConcept C185429906 @default.
- W2101051817 hasConcept C189508267 @default.
- W2101051817 hasConcept C202444582 @default.
- W2101051817 hasConcept C28826006 @default.
- W2101051817 hasConcept C33923547 @default.
- W2101051817 hasConcept C43555835 @default.
- W2101051817 hasConcept C49781872 @default.
- W2101051817 hasConcept C62520636 @default.
- W2101051817 hasConcept C89106044 @default.
- W2101051817 hasConcept C9679016 @default.
- W2101051817 hasConceptScore W2101051817C105795698 @default.
- W2101051817 hasConceptScore W2101051817C106301342 @default.
- W2101051817 hasConceptScore W2101051817C11413529 @default.
- W2101051817 hasConceptScore W2101051817C121332964 @default.
- W2101051817 hasConceptScore W2101051817C126255220 @default.
- W2101051817 hasConceptScore W2101051817C147710293 @default.
- W2101051817 hasConceptScore W2101051817C159694833 @default.
- W2101051817 hasConceptScore W2101051817C167928553 @default.
- W2101051817 hasConceptScore W2101051817C171752962 @default.
- W2101051817 hasConceptScore W2101051817C182081679 @default.
- W2101051817 hasConceptScore W2101051817C185429906 @default.
- W2101051817 hasConceptScore W2101051817C189508267 @default.
- W2101051817 hasConceptScore W2101051817C202444582 @default.
- W2101051817 hasConceptScore W2101051817C28826006 @default.
- W2101051817 hasConceptScore W2101051817C33923547 @default.
- W2101051817 hasConceptScore W2101051817C43555835 @default.
- W2101051817 hasConceptScore W2101051817C49781872 @default.
- W2101051817 hasConceptScore W2101051817C62520636 @default.
- W2101051817 hasConceptScore W2101051817C89106044 @default.
- W2101051817 hasConceptScore W2101051817C9679016 @default.
- W2101051817 hasIssue "7" @default.
- W2101051817 hasLocation W21010518171 @default.
- W2101051817 hasOpenAccess W2101051817 @default.
- W2101051817 hasPrimaryLocation W21010518171 @default.
- W2101051817 hasRelatedWork W2014267574 @default.
- W2101051817 hasRelatedWork W2033415512 @default.
- W2101051817 hasRelatedWork W2060670312 @default.