Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101205723> ?p ?o ?g. }
- W2101205723 endingPage "513" @default.
- W2101205723 startingPage "498" @default.
- W2101205723 abstract "Aromatic amines are prevalently used in a wide variety of industries and are ubiquitous in foods and environment. Many of this class of compounds are potentially mutagenic or even carcinogenic, and the assessment and prediction of their mutagenicity are of practical importance because mutagenicity and carcinogenicity are toxicological end points that play major roles in the genesis of cancer and tumor. Quantitative structure-activity relationship of a homogeneous set of mutagenicity data (TA98 + S9), which was comprehensively compiled from literature, was developed by four machine learning methods, namely hierarchical support vector regression (HSVR), support vector machine, radial basis function neural networks, and genetic function algorithm. The predictions by these models are in good agreement with the experimental observations for those molecules in the training set (n = 97, r(2) = 0.78-0.93, q(2) = 0.64-0.93, root mean square error [RMSE] = 0.51-0.90, SD = 0.34-0.56) and the test set (n = 25, r(2) = 0.73-0.85, RMSE = 0.65-0.85, SD = 0.33-0.51). In addition, several validation criteria were adopted to verify those generated models, and a set of outliers was deliberately selected to examine the robustness of these four predictive models (n = 14, r(2) = 0.35-0.84, RMSE = 0.55-1.21, SD = 0.25-0.72). Finally, various cross-comparison schemes, namely forward comparisons, backward comparisons, and most common molecule comparisons, with assorted published predictive models were carried out. Our results indicate that the HSVR model is the most accurate, robust, and consistent and can be employed as a tool for predicting mutagenicity of aromatic amines." @default.
- W2101205723 created "2016-06-24" @default.
- W2101205723 creator A5001360388 @default.
- W2101205723 creator A5023960433 @default.
- W2101205723 creator A5045130225 @default.
- W2101205723 creator A5089294335 @default.
- W2101205723 date "2010-05-27" @default.
- W2101205723 modified "2023-10-07" @default.
- W2101205723 title "Predicting Mutagenicity of Aromatic Amines by Various Machine Learning Approaches" @default.
- W2101205723 cites W1570912112 @default.
- W2101205723 cites W1571439140 @default.
- W2101205723 cites W1581272510 @default.
- W2101205723 cites W1591569697 @default.
- W2101205723 cites W1948033019 @default.
- W2101205723 cites W1964940342 @default.
- W2101205723 cites W1969437916 @default.
- W2101205723 cites W1973195696 @default.
- W2101205723 cites W1973410261 @default.
- W2101205723 cites W1973641793 @default.
- W2101205723 cites W1973879072 @default.
- W2101205723 cites W1975652648 @default.
- W2101205723 cites W1977173233 @default.
- W2101205723 cites W1981446387 @default.
- W2101205723 cites W1989638282 @default.
- W2101205723 cites W1997545217 @default.
- W2101205723 cites W1999227773 @default.
- W2101205723 cites W2003268550 @default.
- W2101205723 cites W2011580004 @default.
- W2101205723 cites W2012309758 @default.
- W2101205723 cites W2015880797 @default.
- W2101205723 cites W2019966295 @default.
- W2101205723 cites W2019980219 @default.
- W2101205723 cites W2022466155 @default.
- W2101205723 cites W2023235660 @default.
- W2101205723 cites W2023613474 @default.
- W2101205723 cites W2026939352 @default.
- W2101205723 cites W2032226342 @default.
- W2101205723 cites W2045294557 @default.
- W2101205723 cites W2046267808 @default.
- W2101205723 cites W2048639976 @default.
- W2101205723 cites W2051703061 @default.
- W2101205723 cites W2055386655 @default.
- W2101205723 cites W2055887161 @default.
- W2101205723 cites W2062063170 @default.
- W2101205723 cites W2074681440 @default.
- W2101205723 cites W2080124813 @default.
- W2101205723 cites W2083828441 @default.
- W2101205723 cites W2087912266 @default.
- W2101205723 cites W2088381708 @default.
- W2101205723 cites W2089578131 @default.
- W2101205723 cites W2092439609 @default.
- W2101205723 cites W2094241632 @default.
- W2101205723 cites W2099538400 @default.
- W2101205723 cites W2101930653 @default.
- W2101205723 cites W2102537419 @default.
- W2101205723 cites W2110298642 @default.
- W2101205723 cites W2113306279 @default.
- W2101205723 cites W2113853667 @default.
- W2101205723 cites W2123139119 @default.
- W2101205723 cites W2123207935 @default.
- W2101205723 cites W2133707654 @default.
- W2101205723 cites W2143426320 @default.
- W2101205723 cites W2160259800 @default.
- W2101205723 cites W2952798571 @default.
- W2101205723 cites W4229837141 @default.
- W2101205723 cites W4237336148 @default.
- W2101205723 cites W4239510810 @default.
- W2101205723 doi "https://doi.org/10.1093/toxsci/kfq159" @default.
- W2101205723 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20507879" @default.
- W2101205723 hasPublicationYear "2010" @default.
- W2101205723 type Work @default.
- W2101205723 sameAs 2101205723 @default.
- W2101205723 citedByCount "32" @default.
- W2101205723 countsByYear W21012057232012 @default.
- W2101205723 countsByYear W21012057232013 @default.
- W2101205723 countsByYear W21012057232014 @default.
- W2101205723 countsByYear W21012057232016 @default.
- W2101205723 countsByYear W21012057232017 @default.
- W2101205723 countsByYear W21012057232018 @default.
- W2101205723 countsByYear W21012057232019 @default.
- W2101205723 countsByYear W21012057232020 @default.
- W2101205723 countsByYear W21012057232021 @default.
- W2101205723 countsByYear W21012057232022 @default.
- W2101205723 countsByYear W21012057232023 @default.
- W2101205723 crossrefType "journal-article" @default.
- W2101205723 hasAuthorship W2101205723A5001360388 @default.
- W2101205723 hasAuthorship W2101205723A5023960433 @default.
- W2101205723 hasAuthorship W2101205723A5045130225 @default.
- W2101205723 hasAuthorship W2101205723A5089294335 @default.
- W2101205723 hasBestOaLocation W21012057231 @default.
- W2101205723 hasConcept C104317684 @default.
- W2101205723 hasConcept C105795698 @default.
- W2101205723 hasConcept C119857082 @default.
- W2101205723 hasConcept C12267149 @default.
- W2101205723 hasConcept C139945424 @default.
- W2101205723 hasConcept C152877465 @default.
- W2101205723 hasConcept C154945302 @default.
- W2101205723 hasConcept C164126121 @default.