Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101472627> ?p ?o ?g. }
- W2101472627 endingPage "35860" @default.
- W2101472627 startingPage "35850" @default.
- W2101472627 abstract "Aquaporin-4 (AQP4) can assemble into supramolecular aggregates called orthogonal arrays of particles (OAPs). In cells expressing single AQP4 isoforms, we found previously that OAP formation by AQP4-M23 requires N terminus interactions just downstream of Met-23 and that the inability of AQP4-M1 to form OAPs involves blocking by residues upstream of Met-23. Here, we studied M1/M23 interactions and regulated OAP assembly by nanometer-resolution tracking of quantum dot-labeled AQP4 in live cells expressing differentially tagged AQP4 isoforms and in primary glial cell cultures in which native AQP4 was labeled with a monoclonal recombinant neuromyelitis optica autoantibody. OAP assembly was assessed independently by Blue Native gel electrophoresis. We found that OAPs in native glial cells could be reproduced in transfected cells expressing equal amounts of AQP4-M1 and -M23. Mutants of M23 that do not themselves form OAPs, including M23-F26Q and M23-G28P, were able to fully co-associate with native M23 to form large immobile OAPs. Analysis of a palmitoylation-null M1 mutant (C13A/C17A) indicated palmitoylation-dependent OAP assembly only in the presence of M23, with increased M1 palmitoylation causing progressive OAP disruption. Differential regulation of OAP assembly by palmitoylation, calcium elevation, and protein kinase C activation was found in primary glial cell cultures. We conclude that M1 and M23 co-assemble in AQP4 OAPs and that specific signaling events can regulate OAP assembly in glial cells. Aquaporin-4 (AQP4) can assemble into supramolecular aggregates called orthogonal arrays of particles (OAPs). In cells expressing single AQP4 isoforms, we found previously that OAP formation by AQP4-M23 requires N terminus interactions just downstream of Met-23 and that the inability of AQP4-M1 to form OAPs involves blocking by residues upstream of Met-23. Here, we studied M1/M23 interactions and regulated OAP assembly by nanometer-resolution tracking of quantum dot-labeled AQP4 in live cells expressing differentially tagged AQP4 isoforms and in primary glial cell cultures in which native AQP4 was labeled with a monoclonal recombinant neuromyelitis optica autoantibody. OAP assembly was assessed independently by Blue Native gel electrophoresis. We found that OAPs in native glial cells could be reproduced in transfected cells expressing equal amounts of AQP4-M1 and -M23. Mutants of M23 that do not themselves form OAPs, including M23-F26Q and M23-G28P, were able to fully co-associate with native M23 to form large immobile OAPs. Analysis of a palmitoylation-null M1 mutant (C13A/C17A) indicated palmitoylation-dependent OAP assembly only in the presence of M23, with increased M1 palmitoylation causing progressive OAP disruption. Differential regulation of OAP assembly by palmitoylation, calcium elevation, and protein kinase C activation was found in primary glial cell cultures. We conclude that M1 and M23 co-assemble in AQP4 OAPs and that specific signaling events can regulate OAP assembly in glial cells." @default.
- W2101472627 created "2016-06-24" @default.
- W2101472627 creator A5016397545 @default.
- W2101472627 creator A5027914143 @default.
- W2101472627 creator A5042356327 @default.
- W2101472627 date "2009-12-01" @default.
- W2101472627 modified "2023-10-12" @default.
- W2101472627 title "Live Cell Analysis of Aquaporin-4 M1/M23 Interactions and Regulated Orthogonal Array Assembly in Glial Cells" @default.
- W2101472627 cites W1495656315 @default.
- W2101472627 cites W1535419310 @default.
- W2101472627 cites W1607563537 @default.
- W2101472627 cites W1970305997 @default.
- W2101472627 cites W1983797114 @default.
- W2101472627 cites W1988296977 @default.
- W2101472627 cites W1992518077 @default.
- W2101472627 cites W1993064394 @default.
- W2101472627 cites W1995300477 @default.
- W2101472627 cites W1999174563 @default.
- W2101472627 cites W2004630293 @default.
- W2101472627 cites W2011252886 @default.
- W2101472627 cites W2012459072 @default.
- W2101472627 cites W2022066099 @default.
- W2101472627 cites W2029365496 @default.
- W2101472627 cites W2029928668 @default.
- W2101472627 cites W2033794046 @default.
- W2101472627 cites W2040733706 @default.
- W2101472627 cites W2041600167 @default.
- W2101472627 cites W2057853885 @default.
- W2101472627 cites W2066056753 @default.
- W2101472627 cites W2067927161 @default.
- W2101472627 cites W2068005044 @default.
- W2101472627 cites W2080572190 @default.
- W2101472627 cites W2081840738 @default.
- W2101472627 cites W2082064306 @default.
- W2101472627 cites W2083802966 @default.
- W2101472627 cites W2084721170 @default.
- W2101472627 cites W2089428334 @default.
- W2101472627 cites W2092066224 @default.
- W2101472627 cites W2107941546 @default.
- W2101472627 cites W2108469833 @default.
- W2101472627 cites W2113184411 @default.
- W2101472627 cites W2124292468 @default.
- W2101472627 cites W2126145768 @default.
- W2101472627 cites W2126722050 @default.
- W2101472627 cites W2135288986 @default.
- W2101472627 cites W2136132690 @default.
- W2101472627 cites W2144469764 @default.
- W2101472627 cites W2144724957 @default.
- W2101472627 cites W2152962184 @default.
- W2101472627 cites W2153759921 @default.
- W2101472627 cites W2154880249 @default.
- W2101472627 cites W2170463631 @default.
- W2101472627 cites W2172238479 @default.
- W2101472627 doi "https://doi.org/10.1074/jbc.m109.071670" @default.
- W2101472627 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2791014" @default.
- W2101472627 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19843522" @default.
- W2101472627 hasPublicationYear "2009" @default.
- W2101472627 type Work @default.
- W2101472627 sameAs 2101472627 @default.
- W2101472627 citedByCount "78" @default.
- W2101472627 countsByYear W21014726272012 @default.
- W2101472627 countsByYear W21014726272013 @default.
- W2101472627 countsByYear W21014726272014 @default.
- W2101472627 countsByYear W21014726272015 @default.
- W2101472627 countsByYear W21014726272016 @default.
- W2101472627 countsByYear W21014726272017 @default.
- W2101472627 countsByYear W21014726272018 @default.
- W2101472627 countsByYear W21014726272019 @default.
- W2101472627 countsByYear W21014726272020 @default.
- W2101472627 countsByYear W21014726272021 @default.
- W2101472627 countsByYear W21014726272022 @default.
- W2101472627 countsByYear W21014726272023 @default.
- W2101472627 crossrefType "journal-article" @default.
- W2101472627 hasAuthorship W2101472627A5016397545 @default.
- W2101472627 hasAuthorship W2101472627A5027914143 @default.
- W2101472627 hasAuthorship W2101472627A5042356327 @default.
- W2101472627 hasBestOaLocation W21014726271 @default.
- W2101472627 hasConcept C104317684 @default.
- W2101472627 hasConcept C143065580 @default.
- W2101472627 hasConcept C146727910 @default.
- W2101472627 hasConcept C153911025 @default.
- W2101472627 hasConcept C15755913 @default.
- W2101472627 hasConcept C181199279 @default.
- W2101472627 hasConcept C185592680 @default.
- W2101472627 hasConcept C2779201268 @default.
- W2101472627 hasConcept C53345823 @default.
- W2101472627 hasConcept C54009773 @default.
- W2101472627 hasConcept C54355233 @default.
- W2101472627 hasConcept C55493867 @default.
- W2101472627 hasConcept C81885089 @default.
- W2101472627 hasConcept C86803240 @default.
- W2101472627 hasConcept C95444343 @default.
- W2101472627 hasConceptScore W2101472627C104317684 @default.
- W2101472627 hasConceptScore W2101472627C143065580 @default.
- W2101472627 hasConceptScore W2101472627C146727910 @default.
- W2101472627 hasConceptScore W2101472627C153911025 @default.
- W2101472627 hasConceptScore W2101472627C15755913 @default.
- W2101472627 hasConceptScore W2101472627C181199279 @default.