Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101622182> ?p ?o ?g. }
- W2101622182 endingPage "72" @default.
- W2101622182 startingPage "63" @default.
- W2101622182 abstract "The measurement of diffusion coefficients in today’s materials is complicated by the down scaling of the studied structures (nanometric effects in thin films, nano-crystalline layers, etc.) and by the complex production process conditions of industrial samples or structures (temperature variations, complex solute and point defect distributions, stress gradients, etc.). Often diffusion measurements have to be performed in samples for which initial experimental conditions do not offer the possibility of using conventional diffusion analytical solutions. Furthermore, phenomena involved with diffusion are sometimes so numerous and complex (stress, matrix composition inhomogeneities, time dependence of point defect generation sources, electrical effects, clustering effects, etc…) that the use of analytical solutions to solve the observed diffusion behavior is difficult. However, simulations can be of use in these cases. They are time consuming compared to the use of analytical solutions, but are more flexible regarding initial conditions and problem complexity. The use of simulations in order to model physical phenomena is quite common nowadays, and highly complex models have been developed. However, two types of simulations have to be considered: i) simulations aiming to understand and predict phenomena, and ii) simulations for measurement purposes, aiming to extract the (average) value of a physical parameter from experimental data. These two cases have different constrains. In the second case, that is the subject of this article, one of the most important stress is that the simulation has to precisely scale the experiment (sample size, experiment duration, etc.), sometimes preventing the measurement due to computational time consumption. Furthermore, the simpler the model (small number of parameters) used in the simulation, the more relevant the measurement (minimum error). In this paper, examples of recent works using two- and three-dimensional finite element simulations for diffusion coefficient measurements in thin polycrystalline films and nano-crystalline layers are presented. The possible use of simulations for diffusion coefficient measurements considering GB migration, GB segregation, or triple junctions is also discussed." @default.
- W2101622182 created "2016-06-24" @default.
- W2101622182 creator A5028850215 @default.
- W2101622182 creator A5029586322 @default.
- W2101622182 creator A5047474130 @default.
- W2101622182 creator A5050132020 @default.
- W2101622182 creator A5056844246 @default.
- W2101622182 date "2011-03-01" @default.
- W2101622182 modified "2023-09-27" @default.
- W2101622182 title "Numerical Simulation Support for Diffusion Coefficient Measurements in Polycrystalline Thin Films" @default.
- W2101622182 cites W1576320143 @default.
- W2101622182 cites W1620889891 @default.
- W2101622182 cites W1970966248 @default.
- W2101622182 cites W1972607945 @default.
- W2101622182 cites W1974442793 @default.
- W2101622182 cites W1979584509 @default.
- W2101622182 cites W1981929277 @default.
- W2101622182 cites W1987538386 @default.
- W2101622182 cites W2009003566 @default.
- W2101622182 cites W2009820221 @default.
- W2101622182 cites W2020361958 @default.
- W2101622182 cites W2028915403 @default.
- W2101622182 cites W2039617310 @default.
- W2101622182 cites W2041492825 @default.
- W2101622182 cites W2046864625 @default.
- W2101622182 cites W2047610087 @default.
- W2101622182 cites W2055495931 @default.
- W2101622182 cites W2056419878 @default.
- W2101622182 cites W2067933318 @default.
- W2101622182 cites W2079497226 @default.
- W2101622182 cites W2091166389 @default.
- W2101622182 cites W2121049857 @default.
- W2101622182 cites W2401236576 @default.
- W2101622182 cites W4248933783 @default.
- W2101622182 cites W4249857141 @default.
- W2101622182 cites W648397194 @default.
- W2101622182 doi "https://doi.org/10.4028/www.scientific.net/ddf.309-310.63" @default.
- W2101622182 hasPublicationYear "2011" @default.
- W2101622182 type Work @default.
- W2101622182 sameAs 2101622182 @default.
- W2101622182 citedByCount "5" @default.
- W2101622182 countsByYear W21016221822012 @default.
- W2101622182 countsByYear W21016221822015 @default.
- W2101622182 countsByYear W21016221822016 @default.
- W2101622182 countsByYear W21016221822017 @default.
- W2101622182 crossrefType "journal-article" @default.
- W2101622182 hasAuthorship W2101622182A5028850215 @default.
- W2101622182 hasAuthorship W2101622182A5029586322 @default.
- W2101622182 hasAuthorship W2101622182A5047474130 @default.
- W2101622182 hasAuthorship W2101622182A5050132020 @default.
- W2101622182 hasAuthorship W2101622182A5056844246 @default.
- W2101622182 hasConcept C121332964 @default.
- W2101622182 hasConcept C121864883 @default.
- W2101622182 hasConcept C138885662 @default.
- W2101622182 hasConcept C192562407 @default.
- W2101622182 hasConcept C21036866 @default.
- W2101622182 hasConcept C2524010 @default.
- W2101622182 hasConcept C2778755073 @default.
- W2101622182 hasConcept C3017618536 @default.
- W2101622182 hasConcept C33923547 @default.
- W2101622182 hasConcept C41008148 @default.
- W2101622182 hasConcept C41895202 @default.
- W2101622182 hasConcept C56739046 @default.
- W2101622182 hasConcept C57879066 @default.
- W2101622182 hasConcept C62520636 @default.
- W2101622182 hasConcept C68710425 @default.
- W2101622182 hasConcept C69357855 @default.
- W2101622182 hasConcept C97355855 @default.
- W2101622182 hasConcept C99844830 @default.
- W2101622182 hasConceptScore W2101622182C121332964 @default.
- W2101622182 hasConceptScore W2101622182C121864883 @default.
- W2101622182 hasConceptScore W2101622182C138885662 @default.
- W2101622182 hasConceptScore W2101622182C192562407 @default.
- W2101622182 hasConceptScore W2101622182C21036866 @default.
- W2101622182 hasConceptScore W2101622182C2524010 @default.
- W2101622182 hasConceptScore W2101622182C2778755073 @default.
- W2101622182 hasConceptScore W2101622182C3017618536 @default.
- W2101622182 hasConceptScore W2101622182C33923547 @default.
- W2101622182 hasConceptScore W2101622182C41008148 @default.
- W2101622182 hasConceptScore W2101622182C41895202 @default.
- W2101622182 hasConceptScore W2101622182C56739046 @default.
- W2101622182 hasConceptScore W2101622182C57879066 @default.
- W2101622182 hasConceptScore W2101622182C62520636 @default.
- W2101622182 hasConceptScore W2101622182C68710425 @default.
- W2101622182 hasConceptScore W2101622182C69357855 @default.
- W2101622182 hasConceptScore W2101622182C97355855 @default.
- W2101622182 hasConceptScore W2101622182C99844830 @default.
- W2101622182 hasLocation W21016221821 @default.
- W2101622182 hasLocation W21016221822 @default.
- W2101622182 hasOpenAccess W2101622182 @default.
- W2101622182 hasPrimaryLocation W21016221821 @default.
- W2101622182 hasRelatedWork W1976017160 @default.
- W2101622182 hasRelatedWork W2015166125 @default.
- W2101622182 hasRelatedWork W2049504783 @default.
- W2101622182 hasRelatedWork W2054234735 @default.
- W2101622182 hasRelatedWork W2055961031 @default.
- W2101622182 hasRelatedWork W2068452861 @default.
- W2101622182 hasRelatedWork W2079063486 @default.