Matches in SemOpenAlex for { <https://semopenalex.org/work/W2101866511> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2101866511 abstract "The current study presented a generalized regression neural network (GRNN) based approach to predict nitrogen oxides (NOx) emitted from coal-fired boiler. A novel 'multiple' smoothing parameters, which is different from the standard algorithm in which only single smoothing parameter was adopted (Matlab neural network toolbox, for example), were assigned to GRNN model. K-means clustering algorithm was developed so as to reduce the number of smoothing parameters. The training data was firstly partitioned into groups (the number of groups was much smaller than that of training samples) using K-means clustering. A smoothing parameter was then assigned to this group. A recently emerging estimation of distribution algorithm (EDA) was employed to optimize the multiple smoothing parameters. EDA presented in this paper was a kind of optimization algorithm based on Gaussian probability distribution. As a case study, the proposed approach was applied to establish a non-linear model between the parameters of the coal-fired boiler and the NOx emissions. The results showed that the number of cluster has significant effect on the predictive accuracy of GRNN model. GRNN model with multiple smoothing parameters showed better agreement than that with only one smoothing parameter. The modeling errors on the testing subset were 1.24% and 1.62% for GRNN models trained by the present algorithm and the standard algorithm, respectively." @default.
- W2101866511 created "2016-06-24" @default.
- W2101866511 creator A5006993366 @default.
- W2101866511 creator A5051392171 @default.
- W2101866511 creator A5073993084 @default.
- W2101866511 creator A5083209605 @default.
- W2101866511 date "2008-01-01" @default.
- W2101866511 modified "2023-09-23" @default.
- W2101866511 title "Improved Prediction of Nitrogen Oxides Using GRNN with K-Means Clustering and EDA" @default.
- W2101866511 cites W1944278829 @default.
- W2101866511 cites W1971301234 @default.
- W2101866511 cites W1989270503 @default.
- W2101866511 cites W2012871556 @default.
- W2101866511 cites W2106342513 @default.
- W2101866511 cites W2120842174 @default.
- W2101866511 cites W2149723649 @default.
- W2101866511 cites W2617072595 @default.
- W2101866511 doi "https://doi.org/10.1109/icnc.2008.478" @default.
- W2101866511 hasPublicationYear "2008" @default.
- W2101866511 type Work @default.
- W2101866511 sameAs 2101866511 @default.
- W2101866511 citedByCount "5" @default.
- W2101866511 countsByYear W21018665112012 @default.
- W2101866511 countsByYear W21018665112013 @default.
- W2101866511 countsByYear W21018665112018 @default.
- W2101866511 crossrefType "proceedings-article" @default.
- W2101866511 hasAuthorship W2101866511A5006993366 @default.
- W2101866511 hasAuthorship W2101866511A5051392171 @default.
- W2101866511 hasAuthorship W2101866511A5073993084 @default.
- W2101866511 hasAuthorship W2101866511A5083209605 @default.
- W2101866511 hasConcept C111919701 @default.
- W2101866511 hasConcept C11413529 @default.
- W2101866511 hasConcept C121332964 @default.
- W2101866511 hasConcept C154945302 @default.
- W2101866511 hasConcept C163716315 @default.
- W2101866511 hasConcept C2780365114 @default.
- W2101866511 hasConcept C31972630 @default.
- W2101866511 hasConcept C3770464 @default.
- W2101866511 hasConcept C41008148 @default.
- W2101866511 hasConcept C50644808 @default.
- W2101866511 hasConcept C62520636 @default.
- W2101866511 hasConcept C73555534 @default.
- W2101866511 hasConceptScore W2101866511C111919701 @default.
- W2101866511 hasConceptScore W2101866511C11413529 @default.
- W2101866511 hasConceptScore W2101866511C121332964 @default.
- W2101866511 hasConceptScore W2101866511C154945302 @default.
- W2101866511 hasConceptScore W2101866511C163716315 @default.
- W2101866511 hasConceptScore W2101866511C2780365114 @default.
- W2101866511 hasConceptScore W2101866511C31972630 @default.
- W2101866511 hasConceptScore W2101866511C3770464 @default.
- W2101866511 hasConceptScore W2101866511C41008148 @default.
- W2101866511 hasConceptScore W2101866511C50644808 @default.
- W2101866511 hasConceptScore W2101866511C62520636 @default.
- W2101866511 hasConceptScore W2101866511C73555534 @default.
- W2101866511 hasLocation W21018665111 @default.
- W2101866511 hasOpenAccess W2101866511 @default.
- W2101866511 hasPrimaryLocation W21018665111 @default.
- W2101866511 hasRelatedWork W1017828488 @default.
- W2101866511 hasRelatedWork W1971751107 @default.
- W2101866511 hasRelatedWork W2040937631 @default.
- W2101866511 hasRelatedWork W2079352224 @default.
- W2101866511 hasRelatedWork W2079988241 @default.
- W2101866511 hasRelatedWork W2086369498 @default.
- W2101866511 hasRelatedWork W2358894762 @default.
- W2101866511 hasRelatedWork W2368803220 @default.
- W2101866511 hasRelatedWork W2386387936 @default.
- W2101866511 hasRelatedWork W2098894960 @default.
- W2101866511 isParatext "false" @default.
- W2101866511 isRetracted "false" @default.
- W2101866511 magId "2101866511" @default.
- W2101866511 workType "article" @default.