Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102092012> ?p ?o ?g. }
- W2102092012 endingPage "96" @default.
- W2102092012 startingPage "86" @default.
- W2102092012 abstract "Serpentinites form by hydration of ultramafic lithologies in a range of seafloor and shallow subduction zone settings. Serpentinites are recognised as major reservoirs of fluid mobile elements and H2O in subducting oceanic lithosphere, and together with forearc serpentinites formed in the mantle wedge, provide critical information about shallow-level volatile fluxes during subduction. The current study provides new Cl, as well as the first comprehensive Br, I and noble gas analyses reported for seafloor and forearc chrysotile–lizardite serpentinites. The samples were recovered from IODP drilling campaigns of mid-ocean ridge, passive margin and forearc settings (n=17), and ophiolites in the Italian Alps and Apennines (n=10). The aims of this study were to determine the compositional variability of noble gases and halogens in serpentinites entering subduction zones and evaluate the efficiency of gas loss during the early stages of serpentinite subduction. The chrysotile–lizardite serpentinites and serpentised peridotites contain 43–2300 ppm Cl and 3×10−13–2×10−11 mol g−1 36Ar, with the concentrations of these elements broadly related to the estimated degree of serpentinisation. The serpentinites have extremely variable Br/Cl and I/Cl ratios with many samples preserving compositions similar to organic-rich sedimentary marine pore fluids. Serpentinites from the Marianas Forearc have very high I concentrations of up to 45 ppm I and I/Cl ratios of ∼14,000 times the seawater value that is even higher than the maximum I/Cl enrichment observed in sedimentary marine pore fluids. The serpentinites have 130Xe/36Ar and 84Kr/36Ar ratios that are mostly close to or above seawater values, and 20Ne/36Ar ratios that range from seawater to lower values. The serpentinites contain <10–270 ppm K and, irrespective of age (0 Ma to ∼160 Ma), are characterised by 40Ar/36Ar ratios of 300–340 that are slightly higher than the seawater value of 296, thus indicating the presence of minor excess 40Ar*. Three of six serpentinites analysed for helium also have measurable excess 4He contents that cannot be explained by in situ production. The data show that serpentinites trap noble gases and halogens that originate from seawater, organic matter and diverse crustal lithologies. Combined with previous analyses of metamorphosed serpentinites, the new data suggest that approximately 60–70% of the 36Ar entering subduction zones in serpentinites is lost from chrysotile and/or antigorite and could potentially escape through the forearc. An additional, ∼20–30% of the 36Ar entering subduction zones in serpentinites is lost during antigorite breakdown and may be cycled through the arc or back-arc, and ∼1–10% of the 36Ar entering subduction zones in serpentinites may be subducted into the deeper mantle. The data demonstrate decoupling of noble gases, halogens and water during subduction and suggest that subduction-zone fluid fluxes can produce especially high concentrations of noble gases and iodine in newly formed forearc serpentinites. The distinctive I/Cl enrichment of forearc serpentinites suggest that halogen abundance ratios provide a plausible means for inferring the geotectonic setting of serpentinisation in ophiolite samples. The exceptional Cl, Br, I and noble gas concentrations of serpentinites, the potential subduction of the forearc serpentinites and the stability of serpentine minerals to mantle depths of >200 km, imply that serpentinites could dominate the deep recycling budgets of both the heavy halogens and atmospheric noble gases." @default.
- W2102092012 created "2016-06-24" @default.
- W2102092012 creator A5007804894 @default.
- W2102092012 creator A5026003233 @default.
- W2102092012 creator A5035607102 @default.
- W2102092012 creator A5041008278 @default.
- W2102092012 creator A5048248448 @default.
- W2102092012 creator A5082896988 @default.
- W2102092012 date "2013-03-01" @default.
- W2102092012 modified "2023-10-14" @default.
- W2102092012 title "Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites" @default.
- W2102092012 cites W1489332407 @default.
- W2102092012 cites W1495638975 @default.
- W2102092012 cites W1632213541 @default.
- W2102092012 cites W1973442274 @default.
- W2102092012 cites W1973761344 @default.
- W2102092012 cites W1974582790 @default.
- W2102092012 cites W1977973393 @default.
- W2102092012 cites W1978521711 @default.
- W2102092012 cites W1980601506 @default.
- W2102092012 cites W1981114032 @default.
- W2102092012 cites W1981656732 @default.
- W2102092012 cites W1986463804 @default.
- W2102092012 cites W1988761694 @default.
- W2102092012 cites W1990572818 @default.
- W2102092012 cites W1992076990 @default.
- W2102092012 cites W1992232371 @default.
- W2102092012 cites W1996412456 @default.
- W2102092012 cites W2000914122 @default.
- W2102092012 cites W2011304430 @default.
- W2102092012 cites W2013160971 @default.
- W2102092012 cites W2013769665 @default.
- W2102092012 cites W2017649324 @default.
- W2102092012 cites W2019651860 @default.
- W2102092012 cites W2020191881 @default.
- W2102092012 cites W2020537018 @default.
- W2102092012 cites W2026889131 @default.
- W2102092012 cites W2032114832 @default.
- W2102092012 cites W2036198033 @default.
- W2102092012 cites W2041510827 @default.
- W2102092012 cites W2041895575 @default.
- W2102092012 cites W2042014110 @default.
- W2102092012 cites W2049123923 @default.
- W2102092012 cites W2053265077 @default.
- W2102092012 cites W2053441820 @default.
- W2102092012 cites W2055377559 @default.
- W2102092012 cites W2055398367 @default.
- W2102092012 cites W2056368446 @default.
- W2102092012 cites W2057562095 @default.
- W2102092012 cites W2058083832 @default.
- W2102092012 cites W2058595054 @default.
- W2102092012 cites W2059257969 @default.
- W2102092012 cites W2062282604 @default.
- W2102092012 cites W2062325960 @default.
- W2102092012 cites W2066143723 @default.
- W2102092012 cites W2066711449 @default.
- W2102092012 cites W2067660488 @default.
- W2102092012 cites W2072008435 @default.
- W2102092012 cites W2077030154 @default.
- W2102092012 cites W2082691438 @default.
- W2102092012 cites W2083104646 @default.
- W2102092012 cites W2084276621 @default.
- W2102092012 cites W2085663948 @default.
- W2102092012 cites W2085709259 @default.
- W2102092012 cites W2092366437 @default.
- W2102092012 cites W2098490586 @default.
- W2102092012 cites W2107529484 @default.
- W2102092012 cites W2117024433 @default.
- W2102092012 cites W2120652947 @default.
- W2102092012 cites W2120887646 @default.
- W2102092012 cites W2134070608 @default.
- W2102092012 cites W2143107892 @default.
- W2102092012 cites W2144986801 @default.
- W2102092012 cites W2150498084 @default.
- W2102092012 cites W2153412729 @default.
- W2102092012 cites W2153426800 @default.
- W2102092012 cites W2254539765 @default.
- W2102092012 cites W2258018855 @default.
- W2102092012 cites W2320819202 @default.
- W2102092012 cites W2332923129 @default.
- W2102092012 cites W2478259554 @default.
- W2102092012 cites W2499361848 @default.
- W2102092012 cites W2502775027 @default.
- W2102092012 cites W4210764204 @default.
- W2102092012 cites W4247609482 @default.
- W2102092012 doi "https://doi.org/10.1016/j.epsl.2013.01.006" @default.
- W2102092012 hasPublicationYear "2013" @default.
- W2102092012 type Work @default.
- W2102092012 sameAs 2102092012 @default.
- W2102092012 citedByCount "127" @default.
- W2102092012 countsByYear W21020920122013 @default.
- W2102092012 countsByYear W21020920122014 @default.
- W2102092012 countsByYear W21020920122015 @default.
- W2102092012 countsByYear W21020920122016 @default.
- W2102092012 countsByYear W21020920122017 @default.
- W2102092012 countsByYear W21020920122018 @default.
- W2102092012 countsByYear W21020920122019 @default.
- W2102092012 countsByYear W21020920122020 @default.