Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102128050> ?p ?o ?g. }
- W2102128050 endingPage "673" @default.
- W2102128050 startingPage "635" @default.
- W2102128050 abstract "Because of the strong spatial confinement of electronic wave functions and reduced dielectric screening, the effects of carrier-carrier Coulomb interactions are greatly enhanced in semiconductor nanocrystals (NCs) compared with those in bulk materials. These interactions open a highly efficient decay channel via Auger recombination, which represents a dominant recombination pathway for multiexcitons in NCs. Furthermore, strong Coulomb coupling between charge carriers leads to extremely efficient direct photogeneration of multiexcitons by single photons via carrier (or exciton) multiplication. This review focuses on spectral and dynamical properties of multiexcitons in semiconductor NCs. The specific topics discussed here include the structure of NC electronic states, spectral signatures of multiexcitons in transient absorption and photoluminescence, exciton-exciton interaction energies, Auger recombination, and carrier multiplication. This chapter also briefly reviews the implications of multiexciton effects for practical technologies, such as NC lasing and photovoltaics." @default.
- W2102128050 created "2016-06-24" @default.
- W2102128050 creator A5075570325 @default.
- W2102128050 date "2007-05-01" @default.
- W2102128050 modified "2023-10-10" @default.
- W2102128050 title "Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals" @default.
- W2102128050 cites W1497033841 @default.
- W2102128050 cites W1513209253 @default.
- W2102128050 cites W1544449555 @default.
- W2102128050 cites W1967125278 @default.
- W2102128050 cites W1967915083 @default.
- W2102128050 cites W1976662790 @default.
- W2102128050 cites W1977304388 @default.
- W2102128050 cites W1979338123 @default.
- W2102128050 cites W1981529585 @default.
- W2102128050 cites W1982564571 @default.
- W2102128050 cites W1983859069 @default.
- W2102128050 cites W1984055957 @default.
- W2102128050 cites W1987763890 @default.
- W2102128050 cites W1988408033 @default.
- W2102128050 cites W1990550281 @default.
- W2102128050 cites W1990796785 @default.
- W2102128050 cites W1991667855 @default.
- W2102128050 cites W1998682694 @default.
- W2102128050 cites W1998832086 @default.
- W2102128050 cites W2000343443 @default.
- W2102128050 cites W2000372728 @default.
- W2102128050 cites W2002296412 @default.
- W2102128050 cites W2004070268 @default.
- W2102128050 cites W2004567430 @default.
- W2102128050 cites W2004864837 @default.
- W2102128050 cites W2006495521 @default.
- W2102128050 cites W2015160114 @default.
- W2102128050 cites W2018630756 @default.
- W2102128050 cites W2019638687 @default.
- W2102128050 cites W2021179200 @default.
- W2102128050 cites W2023222227 @default.
- W2102128050 cites W2024350117 @default.
- W2102128050 cites W2024451107 @default.
- W2102128050 cites W2025669689 @default.
- W2102128050 cites W2027422931 @default.
- W2102128050 cites W2029637177 @default.
- W2102128050 cites W2030448178 @default.
- W2102128050 cites W2030903093 @default.
- W2102128050 cites W2032427157 @default.
- W2102128050 cites W2032473128 @default.
- W2102128050 cites W2034967224 @default.
- W2102128050 cites W2038980827 @default.
- W2102128050 cites W2039501915 @default.
- W2102128050 cites W2048508858 @default.
- W2102128050 cites W2048790219 @default.
- W2102128050 cites W2049600109 @default.
- W2102128050 cites W2050644501 @default.
- W2102128050 cites W2053867938 @default.
- W2102128050 cites W2055442658 @default.
- W2102128050 cites W2056730231 @default.
- W2102128050 cites W2058078177 @default.
- W2102128050 cites W2062141872 @default.
- W2102128050 cites W2062937063 @default.
- W2102128050 cites W2065252341 @default.
- W2102128050 cites W2066091879 @default.
- W2102128050 cites W2067627076 @default.
- W2102128050 cites W2070789776 @default.
- W2102128050 cites W2073470705 @default.
- W2102128050 cites W2075539838 @default.
- W2102128050 cites W2077535244 @default.
- W2102128050 cites W2077536719 @default.
- W2102128050 cites W2078514003 @default.
- W2102128050 cites W2078564623 @default.
- W2102128050 cites W2089637698 @default.
- W2102128050 cites W2093065511 @default.
- W2102128050 cites W2094070753 @default.
- W2102128050 cites W2094919627 @default.
- W2102128050 cites W2101130956 @default.
- W2102128050 cites W2121296270 @default.
- W2102128050 cites W2127371360 @default.
- W2102128050 cites W2133781275 @default.
- W2102128050 cites W2135010704 @default.
- W2102128050 cites W2154043118 @default.
- W2102128050 cites W2157172906 @default.
- W2102128050 cites W2168172744 @default.
- W2102128050 cites W2171867126 @default.
- W2102128050 cites W225669340 @default.
- W2102128050 cites W2412612512 @default.
- W2102128050 cites W2506096932 @default.
- W2102128050 cites W3022103717 @default.
- W2102128050 doi "https://doi.org/10.1146/annurev.physchem.58.032806.104537" @default.
- W2102128050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17163837" @default.
- W2102128050 hasPublicationYear "2007" @default.
- W2102128050 type Work @default.
- W2102128050 sameAs 2102128050 @default.
- W2102128050 citedByCount "794" @default.
- W2102128050 countsByYear W21021280502012 @default.
- W2102128050 countsByYear W21021280502013 @default.
- W2102128050 countsByYear W21021280502014 @default.
- W2102128050 countsByYear W21021280502015 @default.
- W2102128050 countsByYear W21021280502016 @default.
- W2102128050 countsByYear W21021280502017 @default.