Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102230048> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2102230048 abstract "Summary form only given. SUCRAGE is a supervised learning method by automatic generation of classification rules. The obtained results in generalization using the built rules are satisfactory. However, to be easily interpreted and to allow the explanation of the obtained classification, the rule base size must be reasonable. We propose to optimize the number of rules generated by SUCRAGE using genetic algorithms. The rule selection problem is formulated as a combinatorial optimization problem with two objectives: to maximize the number of correctly classified patterns and to minimize the number of classification rules. A set of rules is coded into a binary string and treated as an individual in genetic algorithm. A computer implementation of this optimization method is proposed and the experimental results obtained on various data are presented. The good performance of this approach allows us to make of SUCRAGE a knowledge acquisition tool, and to envisage the tests' extension to other data types." @default.
- W2102230048 created "2016-06-24" @default.
- W2102230048 creator A5030719563 @default.
- W2102230048 creator A5039272258 @default.
- W2102230048 creator A5071004830 @default.
- W2102230048 date "2004-02-03" @default.
- W2102230048 modified "2023-09-27" @default.
- W2102230048 title "Using genetic algorithms to optimize the number of classification rules in SUCRAGE" @default.
- W2102230048 doi "https://doi.org/10.1109/aiccsa.2003.1227540" @default.
- W2102230048 hasPublicationYear "2004" @default.
- W2102230048 type Work @default.
- W2102230048 sameAs 2102230048 @default.
- W2102230048 citedByCount "0" @default.
- W2102230048 crossrefType "proceedings-article" @default.
- W2102230048 hasAuthorship W2102230048A5030719563 @default.
- W2102230048 hasAuthorship W2102230048A5039272258 @default.
- W2102230048 hasAuthorship W2102230048A5071004830 @default.
- W2102230048 hasConcept C110083411 @default.
- W2102230048 hasConcept C11413529 @default.
- W2102230048 hasConcept C119857082 @default.
- W2102230048 hasConcept C154945302 @default.
- W2102230048 hasConcept C161164918 @default.
- W2102230048 hasConcept C41008148 @default.
- W2102230048 hasConcept C4935549 @default.
- W2102230048 hasConcept C8880873 @default.
- W2102230048 hasConceptScore W2102230048C110083411 @default.
- W2102230048 hasConceptScore W2102230048C11413529 @default.
- W2102230048 hasConceptScore W2102230048C119857082 @default.
- W2102230048 hasConceptScore W2102230048C154945302 @default.
- W2102230048 hasConceptScore W2102230048C161164918 @default.
- W2102230048 hasConceptScore W2102230048C41008148 @default.
- W2102230048 hasConceptScore W2102230048C4935549 @default.
- W2102230048 hasConceptScore W2102230048C8880873 @default.
- W2102230048 hasLocation W21022300481 @default.
- W2102230048 hasLocation W21022300482 @default.
- W2102230048 hasOpenAccess W2102230048 @default.
- W2102230048 hasPrimaryLocation W21022300481 @default.
- W2102230048 hasRelatedWork W2782789473 @default.
- W2102230048 hasRelatedWork W2908483662 @default.
- W2102230048 hasRelatedWork W2985682355 @default.
- W2102230048 hasRelatedWork W3094041170 @default.
- W2102230048 hasRelatedWork W4226466708 @default.
- W2102230048 hasRelatedWork W4306321456 @default.
- W2102230048 hasRelatedWork W4310145772 @default.
- W2102230048 hasRelatedWork W4364301731 @default.
- W2102230048 hasRelatedWork W4383560187 @default.
- W2102230048 hasRelatedWork W4385059353 @default.
- W2102230048 isParatext "false" @default.
- W2102230048 isRetracted "false" @default.
- W2102230048 magId "2102230048" @default.
- W2102230048 workType "article" @default.