Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102367710> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2102367710 abstract "Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach--such as speed and cost efficiency--its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC) transformation of protein sequences into uniform vectors of principal amino acid properties.Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen.VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without recourse to sequence alignment. The server can be used on its own or in combination with alignment-based prediction methods. It is freely-available online at the URL: http://www.jenner.ac.uk/VaxiJen." @default.
- W2102367710 created "2016-06-24" @default.
- W2102367710 creator A5052238096 @default.
- W2102367710 creator A5052912254 @default.
- W2102367710 date "2007-01-05" @default.
- W2102367710 modified "2023-10-18" @default.
- W2102367710 title "VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines" @default.
- W2102367710 cites W1963827004 @default.
- W2102367710 cites W1966348200 @default.
- W2102367710 cites W1977553763 @default.
- W2102367710 cites W2002566401 @default.
- W2102367710 cites W2005162839 @default.
- W2102367710 cites W2014892364 @default.
- W2102367710 cites W2023306209 @default.
- W2102367710 cites W2046452372 @default.
- W2102367710 cites W2049858829 @default.
- W2102367710 cites W2055043387 @default.
- W2102367710 cites W2117057887 @default.
- W2102367710 cites W2123717481 @default.
- W2102367710 cites W2124306486 @default.
- W2102367710 cites W2124672930 @default.
- W2102367710 cites W2142131700 @default.
- W2102367710 cites W2155653793 @default.
- W2102367710 cites W2161746138 @default.
- W2102367710 doi "https://doi.org/10.1186/1471-2105-8-4" @default.
- W2102367710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1780059" @default.
- W2102367710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17207271" @default.
- W2102367710 hasPublicationYear "2007" @default.
- W2102367710 type Work @default.
- W2102367710 sameAs 2102367710 @default.
- W2102367710 citedByCount "1552" @default.
- W2102367710 countsByYear W21023677102012 @default.
- W2102367710 countsByYear W21023677102013 @default.
- W2102367710 countsByYear W21023677102014 @default.
- W2102367710 countsByYear W21023677102015 @default.
- W2102367710 countsByYear W21023677102016 @default.
- W2102367710 countsByYear W21023677102017 @default.
- W2102367710 countsByYear W21023677102018 @default.
- W2102367710 countsByYear W21023677102019 @default.
- W2102367710 countsByYear W21023677102020 @default.
- W2102367710 countsByYear W21023677102021 @default.
- W2102367710 countsByYear W21023677102022 @default.
- W2102367710 countsByYear W21023677102023 @default.
- W2102367710 crossrefType "journal-article" @default.
- W2102367710 hasAuthorship W2102367710A5052238096 @default.
- W2102367710 hasAuthorship W2102367710A5052912254 @default.
- W2102367710 hasBestOaLocation W21023677101 @default.
- W2102367710 hasConcept C103278499 @default.
- W2102367710 hasConcept C104292427 @default.
- W2102367710 hasConcept C104317684 @default.
- W2102367710 hasConcept C115961682 @default.
- W2102367710 hasConcept C147483822 @default.
- W2102367710 hasConcept C154945302 @default.
- W2102367710 hasConcept C2775905019 @default.
- W2102367710 hasConcept C2779026604 @default.
- W2102367710 hasConcept C41008148 @default.
- W2102367710 hasConcept C54355233 @default.
- W2102367710 hasConcept C70721500 @default.
- W2102367710 hasConcept C86803240 @default.
- W2102367710 hasConceptScore W2102367710C103278499 @default.
- W2102367710 hasConceptScore W2102367710C104292427 @default.
- W2102367710 hasConceptScore W2102367710C104317684 @default.
- W2102367710 hasConceptScore W2102367710C115961682 @default.
- W2102367710 hasConceptScore W2102367710C147483822 @default.
- W2102367710 hasConceptScore W2102367710C154945302 @default.
- W2102367710 hasConceptScore W2102367710C2775905019 @default.
- W2102367710 hasConceptScore W2102367710C2779026604 @default.
- W2102367710 hasConceptScore W2102367710C41008148 @default.
- W2102367710 hasConceptScore W2102367710C54355233 @default.
- W2102367710 hasConceptScore W2102367710C70721500 @default.
- W2102367710 hasConceptScore W2102367710C86803240 @default.
- W2102367710 hasIssue "1" @default.
- W2102367710 hasLocation W21023677101 @default.
- W2102367710 hasLocation W21023677102 @default.
- W2102367710 hasLocation W21023677103 @default.
- W2102367710 hasLocation W21023677104 @default.
- W2102367710 hasLocation W21023677105 @default.
- W2102367710 hasLocation W21023677106 @default.
- W2102367710 hasOpenAccess W2102367710 @default.
- W2102367710 hasPrimaryLocation W21023677101 @default.
- W2102367710 hasRelatedWork W1964283547 @default.
- W2102367710 hasRelatedWork W1987442605 @default.
- W2102367710 hasRelatedWork W2002128513 @default.
- W2102367710 hasRelatedWork W2052698955 @default.
- W2102367710 hasRelatedWork W2067928263 @default.
- W2102367710 hasRelatedWork W2377226093 @default.
- W2102367710 hasRelatedWork W2382815177 @default.
- W2102367710 hasRelatedWork W2474401221 @default.
- W2102367710 hasRelatedWork W3145072960 @default.
- W2102367710 hasRelatedWork W2092874662 @default.
- W2102367710 hasVolume "8" @default.
- W2102367710 isParatext "false" @default.
- W2102367710 isRetracted "false" @default.
- W2102367710 magId "2102367710" @default.
- W2102367710 workType "article" @default.