Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102396989> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2102396989 endingPage "2034" @default.
- W2102396989 startingPage "2032" @default.
- W2102396989 abstract "HomeCirculationVol. 113, No. 17Akt Signaling and Growth of the Heart Free AccessEditorialPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessEditorialPDF/EPUBAkt Signaling and Growth of the Heart Kenneth Walsh Kenneth WalshKenneth Walsh From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass. Search for more papers by this author Originally published2 May 2006https://doi.org/10.1161/CIRCULATIONAHA.106.615138Circulation. 2006;113:2032–2034Physiological and pathological stimuli produce clinically and molecularly distinct forms of cardiac growth. Physiological cardiac growth is a feature of normal postnatal development in which an increase in cardiac muscle cell diameter is observed as infants mature to adults.1 This nonpathological heart growth, sometimes referred to as physiological hypertrophy,2 is similar to the growth observed in the hearts of trained athletes in whom the adaptation to increased workload leads to increased vascularization of the myocardium and more forceful ejection.1,3 In contrast, pathological hypertrophy occurs in patients with hypertension or valvular heart disease. A number of molecular distinctions can be made between physiological and pathological cardiac hypertrophy. For example, pathological cardiac hypertrophy is associated with interstitial fibrosis, activation of a fetal gene program, and myocyte apoptosis, whereas physiological cardiac growth does not display these features. Most studies have focused on elucidating mechanisms of pathological heart growth, whereas the molecular regulation of physiological cardiac growth is less understood. In this issue of Circulation, an article by DeBosch et al4 sheds light on the role of Akt1 signaling in the promotion of physiological growth and inhibition of pathological hypertrophy.Article p 2097The Akt (also referred to as protein kinase B) family of serine/threonine protein kinases is highly conserved in evolution.5 Akt1 and Akt2 share extensive sequence homology at the amino acid level, whereas Akt3 is slightly more divergent in structure and is expressed as a splice variant that lacks a regulatory phosphorylation site.6 Akt protein kinases are stimulated by a number of receptor tyrosine kinases, and this is mediated by the action of phosphatidylinositol 3-kinase (PI3K). PI3K phosphorylates inositol lipids that activate Akt directly by binding to its pleckstrin homology domain and promoting its translocation to the membrane and indirectly by activating the protein kinases that phosphorylate Akt. In the heart, Akt activation is regulated by insulin and nutritional status,7 exercise training,8–10 pressure overload,11 and advanced disease.12,13 In turn, Akt signaling regulates myocyte size, at least in part, through activation of mTOR-dependent progrowth pathways14,15 and suppression of GSK3β- and FOXO-dependent atrophy programs.16–18Studies in Drosophila melanogaster show that PI3K/Akt signaling is an essential component of the growth response of the organism to nutritional input. Unlike mammals, Drosophila contains a single Akt gene. Loss-of-function mutations in Drosophila Akt lead to embryonic lethality and are associated with ectopic apoptosis.19 Importantly, mosaic flies containing Akt-deficient cells display smaller cells and organs.20 Likewise, flies deficient for S6 kinase, a downstream target of Akt, have smaller bodies comprising smaller cells rather than fewer cells.21 These data clearly document the importance of the Akt regulatory pathway in the physiological growth response in simple animals. Similarly, numerous lines of data also suggest that this pathway is of critical importance in mammalian growth and metabolic responses. Gene ablation studies in mice have shown that Akt1 deficiency results in slightly diminished growth, and these mice exhibit increased frequencies of spontaneous and stress-induced apoptosis.22,23 Akt3-deficient mice display a selective reduction in brain size resulting from fewer and smaller cells.24 In contrast, Akt2-deficient mice have a normal body size but are mildly insulin resistant.25 However, the combined deletion of Akt1 and Akt2 genes results in perinatal lethality with multiple developmental defects,26 indicating a large degree of functional overlap between the different Akt isoforms. Nevertheless, studies have documented functional differences between the Akt1 and Akt2 isoforms with regard to insulin-dependent glucose uptake.27DeBosch et al4 now show that Akt1-deficient mice are resistant to swim training–induced cardiac hypertrophy. Furthermore, they find that adult murine cardiac myocytes are resistant to insulin-like growth factor-1–stimulated protein synthesis in vitro, suggesting that Akt1 deficiency in myocytes accounts for the reduction in heart growth in this mouse model. These data are consistent with a growing body of evidence indicating that the PI3K-Akt signaling pathway is important for physiological growth of the heart. For example, insulin-mediated activation of this signaling pathway has been shown to regulate cardiac growth in response to diet-induced changes in body size.7 This study also showed that the overexpression of a constitutively active form of Akt1 in cultured rat cardiomyocytes leads to an increase in cell growth in the absence of atrial natriuretic peptide gene induction and reorganization of the actin cytoskeleton, which generally are associated with pathological hypertrophy.28In light of these new observations in Akt1-deficient mice, it also is relevant to consider the findings of gain-of-function experiments in which modified Akt isoforms are overexpressed in the hearts of mice. Overexpression of the E40K mutation of Akt1 leads to modest hypertrophy (≈40% increase in heart size), and these hearts do not exhibit features of pathological hypertrophy or any defect in contractility.29 In fact, these hearts display improved contractile properties and can be viewed as being similar to the “athlete’s heart.” In contrast to these findings, cardiac-specific Akt1 or Akt3 transgenic mice, constructed with myristoylated or phosphomimetic forms of these proteins, can display very large increases in heart size that correspond to the development of interstitial fibrosis and cardiac dysfunction.13,14,30 How can one explain the divergent phenotypes of the Akt transgenic mice? Recently, studies with an inducible, cardiac-specific Akt1 transgenic mouse line have shown that short-term Akt activation is associated with modest growth of the heart with preserved contractile function, whereas long-term Akt expression leads to excessive cardiac hypertrophy that is associated with pathological remodeling and loss of contractile function.15 These data indicate that the overall extent of cardiac growth resulting from Akt activation is a critical determinant of the difference between physiological and pathological cardiac hypertrophy. Furthermore, it was shown that a deficiency in vascular endothelial growth factor–mediated angiogenesis plays a pivotal role in promoting the transition from physiological or pathological growth in the inducible Akt model.15 Thus, the impairment in contractile function is not caused by the extent of Akt-mediated cardiac hypertrophy per se but by an imbalance between tissue growth and angiogenesis as the heart enlarges.The most intriguing aspect of the study by DeBosch et al4 is the demonstration that Akt1-deficient mice show an exaggerated growth response to pathological stimuli. These effects are likely to be a direct effect of Akt1 deficiency in the heart because myocytes isolated from adult Akt1-deficient mice also display enhanced protein synthesis in response to endothelin-1 treatment. Thus, it appears that Akt signaling actively suppresses signaling pathways that promote pathological hypertrophy, in addition to its actions in promoting physiological growth. Although the mechanisms by which this occurs in the heart are unknown, cross-talk between Akt and the ERK31,32 and p3833 signaling pathways has been documented in other cell types, and ERK and p38 signaling has been implicated in pathological hypertrophy in heart.In addition to its growth regulatory properties, it is widely recognized that Akt1 signaling confers cytoprotection to the myocardium in both acute and chronic models of cardiac injury.34,35 Recently, it was reported that overexpression of wild-type Akt1 exclusively in the nucleus of cardiac myocytes in transgenic mice protects the heart from ischemia-reperfusion injury.36 Of particular interest, the cytoprotective actions of chronic Akt1 activation occurred in the absence of detectable cardiac growth, indicating that the growth and protective phenotypes conferred by Akt may depend on its subcellular distribution. One also should consider the possible contributions of the Akt2 and Akt3 isoforms in the heart. In this regard, the expression of Akt2 is relatively high in heart, in addition to “metabolic” tissues such as skeletal muscle and liver.37 Furthermore, although Akt3 is expressed at low levels in nonstressed heart, both Akt3 splice variants are upregulated in diseased human heart, but the levels of Akt1 and Akt2 do not change.13 However, in contrast to Akt1, relatively little is known about the roles of Akt2 and Akt3 in the heart.The findings of DeBosch et al4 and others provide a framework indicating that Akt1 signaling is a key regulator of physiological heart growth, whereas other signaling pathways may predominate in pathological growth. However, a number of questions remain. First, does Akt2 have a metabolic role in the heart that can be critical under conditions of stress? Do the different Akt isoforms have an adaptive or maladaptive role when they are upregulated in the diseased heart? Finally, it will be important to dissect the different downstream signaling pathways that confer growth and cytoprotective actions of this signaling step to determine how the subcellular localization of Akt influences these processes. Therefore, despite numerous studies on Akt action in the heart, it appears that continued research in this area will provide important new information about cardiac growth and function.The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.DisclosuresNone.FootnotesCorrespondence to Dr Kenneth Walsh, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany St, W-W-527, Boston, MA 02118. E-mail [email protected] References 1 Hudlicka O, Brown MD. Postnatal growth of the heart and its blood vessels. J Vasc Res. 1996; 33: 266–287.CrossrefMedlineGoogle Scholar2 Dorn GW 2nd, Robbins J, Sugden PH. Phenotyping hypertrophy: eschew obfuscation. Circ Res. 2003; 92: 1171–1175.LinkGoogle Scholar3 Richey PA, Brown SP. Pathological versus physiological left ventricular hypertrophy: a review. J Sports Sci. 1998; 16: 129–141.CrossrefMedlineGoogle Scholar4 DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ. Akt1 is required for physiological cardiac growth. Circulation. 2006; 113: 2097–2104.LinkGoogle Scholar5 Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999; 13: 2905–2927.CrossrefMedlineGoogle Scholar6 Brodbeck D, Hill MM, Hemmings BA. Two splice variants of protein kinase B gamma have different regulatory capacity depending on the presence or absence of the regulatory phosphorylation site serine 472 in the carboxyl-terminal hydrophobic domain. J Biol Chem. 2001; 276: 29550–29558.CrossrefMedlineGoogle Scholar7 Shiojima I, Yefremashvili M, Luo Z, Kureishi Y, Takahashi A, Tao J, Rosenzweig A, Kahn CR, Abel ED, Walsh K. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J Biol Chem. 2002; 277: 37670–37677.CrossrefMedlineGoogle Scholar8 Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004; 94: 110–118.LinkGoogle Scholar9 Konhilas JP, Maass AH, Luckey SW, Stauffer BL, Olson EN, Leinwand LA. Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol. 2004; 287: H2768–H2776.CrossrefMedlineGoogle Scholar10 Konhilas JP, Widegren U, Allen DL, Paul AC, Cleary A, Leinwand LA. Loaded wheel running and muscle adaptation in the mouse. Am J Physiol Heart Circ Physiol. 2005; 289: H455–H465.CrossrefMedlineGoogle Scholar11 Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem. 2000; 275: 4693–4698.CrossrefMedlineGoogle Scholar12 Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 2001; 103: 670–677.CrossrefMedlineGoogle Scholar13 Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G, Liao R, Colucci WS, Ivashchenko Y, Walsh K, Shiojima I. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol. 2005; 38: 375–385.CrossrefMedlineGoogle Scholar14 Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 2002; 22: 2799–2809.CrossrefMedlineGoogle Scholar15 Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci W, Walsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005; 115: 2108–2118.CrossrefMedlineGoogle Scholar16 Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AF, Walsh K. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem. 2005; 280: 20814–20823.CrossrefMedlineGoogle Scholar17 Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, Molkentin JD, Alessandrini A, Woodgett J, Hajjar R, Michael A, Force T. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol. 2000; 151: 117–130.CrossrefMedlineGoogle Scholar18 Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002; 99: 907–912.CrossrefMedlineGoogle Scholar19 Staveley BE, Ruel L, Jin J, Stambolic V, Mastronardi FG, Heitzler P, Woodgett JR, Manoukian AS. Genetic analysis of protein kinase B (AKT) in Drosophila. Curr Biol. 1998; 8: 599–602.CrossrefMedlineGoogle Scholar20 Verdu J, Buratovich MA, Wilder EL, Birnbaum MJ. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol. 1999; 1: 500–506.CrossrefMedlineGoogle Scholar21 Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G. Drosophila S6 kinase: a regulator of cell size. Science. 1999; 285: 2126–2129.CrossrefMedlineGoogle Scholar22 Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001; 15: 2203–2208.CrossrefMedlineGoogle Scholar23 Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem. 2001; 276: 38349–38352.CrossrefMedlineGoogle Scholar24 Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VM, Szabolcs M, de Jong R, Oltersdorf T, Ludwig T, Efstratiadis A, Birnbaum MJ. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol. 2005; 25: 1869–1878.CrossrefMedlineGoogle Scholar25 Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001; 292: 1728–1731.CrossrefMedlineGoogle Scholar26 Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003; 17: 1352–1365.CrossrefMedlineGoogle Scholar27 Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J Biol Chem. 2003; 278: 49530–49536.CrossrefMedlineGoogle Scholar28 Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med. 1997; 75: 901–920.CrossrefMedlineGoogle Scholar29 Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross J Jr. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A. 2002; 99: 12333–12338.CrossrefMedlineGoogle Scholar30 Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002; 277: 22896–22901.CrossrefMedlineGoogle Scholar31 Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999; 286: 1741–1744.CrossrefMedlineGoogle Scholar32 Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science. 1999; 286: 1738–1741.CrossrefMedlineGoogle Scholar33 Gratton JP, Morales-Ruiz M, Kureishi Y, Fulton D, Walsh K, Sessa WC. Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem. 2001; 276: 30359–30365.CrossrefMedlineGoogle Scholar34 Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000; 101: 660–667.CrossrefMedlineGoogle Scholar35 Taniyama Y, Walsh K. Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol. 2002; 34: 1241–1247.CrossrefMedlineGoogle Scholar36 Shiraishi I, Melendez J, Ahn Y, Skavdahl M, Murphy E, Welch S, Schaefer E, Walsh K, Rosenzweig A, Torella D, Nurzynska D, Kajstura J, Leri A, Anversa P, Sussman MA. Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res. 2004; 94: 884–891.LinkGoogle Scholar37 Altomare DA, Guo K, Cheng JQ, Sonoda G, Walsh K, Testa JR. Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene. 1995; 11: 1055–1060.MedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Chakrabarti M, Raut G, Jain N and Bhadra M (2022) Prohibitin1 maintains mitochondrial quality in isoproterenol‐induced cardiac hypertrophy in H9C2 cells, Biology of the Cell, 10.1111/boc.202200094, 115:2, (2200094), Online publication date: 1-Feb-2023. Liu X, Li D, Pi W, Wang B, Xu S, Yu L, Yao L, Sun Z, Jiang J and Mi Y (2022) LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation, International Immunopharmacology, 10.1016/j.intimp.2022.109379, 113, (109379), Online publication date: 1-Dec-2022. Balamurugan K, Chandra K, Sai Latha S, Swathi M, Joshi M, Misra P and Parsa K (2022) PHLPPs: Emerging players in metabolic disorders, Drug Discovery Today, 10.1016/j.drudis.2022.07.002, 27:10, (103317), Online publication date: 1-Oct-2022. Shen S, Sewanan L, Shao S, Halder S, Stankey P, Li X and Campbell S (2022) Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue, Stem Cell Reports, 10.1016/j.stemcr.2022.07.006, 17:9, (2037-2049), Online publication date: 1-Sep-2022. Støle T, Lunde M, Shen X, Martinsen M, Lunde P, Li J, Lockwood F, Sjaastad I, Louch W, Aronsen J, Christensen G and Carlson C (2022) The female syndecan-4−/− heart has smaller cardiomyocytes, augmented insulin/pSer473-Akt/pSer9-GSK-3β signaling, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels, Frontiers in Cell and Developmental Biology, 10.3389/fcell.2022.908126, 10 Charles S, Sreekumar J and Natarajan J (2022) Transcriptomic meta-analysis reveals biomarker pairs and key pathways in Tetralogy of Fallot, Journal of Bioinformatics and Computational Biology, 10.1142/S0219720022400042, 20:04, Online publication date: 1-Aug-2022. Mprah R, Ma Y, Adzika G, Ndzie Noah M, Adekunle A, Duah M, Adu‐Amankwaah J, Wowui P, Okwuma J, Qiao W and Wang C (2022) Metabotropic glutamate receptor 5 blockade attenuates pathological cardiac remodelling in pulmonary arterial hypertension, Clinical and Experimental Pharmacology and Physiology, 10.1111/1440-1681.13633, 49:5, (558-566), Online publication date: 1-May-2022. Tavasoli M, Feridooni T, Feridooni H, Sokolenko S, Mishra A, Lefsay A, Srinivassane S, Reid S, Rowsell J, Praest M, MacKinnon A, Mammoliti M, Maloney A, Moraca M, Uaesoontrachoon K, Nagaraju K, Hoffman E, Pasumarthi K and McMaster C (2022) A mouse model of inherited choline kinase β-deficiency presents with specific cardiac abnormalities and a predisposition to arrhythmia, Journal of Biological Chemistry, 10.1016/j.jbc.2022.101716, 298:3, (101716), Online publication date: 1-Mar-2022. Yi J, Perla S and Bennett A (2022) An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies, Cardiovascular Drugs and Therapy, 10.1007/s10557-022-07324-0 Sen S, Hallee L and Lam C (2021) The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases, Journal of Personalized Medicine, 10.3390/jpm11121294, 11:12, (1294) Al-Shamasi A, Elkaffash R, Mohamed M, Rayan M, Al-Khater D, Gadeau A, Ahmed R, Hasan A, Eldassouki H, Yalcin H, Abdul-Ghani M and Mraiche F (2021) Crosstalk between Sodium–Glucose Cotransporter Inhibitors and Sodium–Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases, International Journal of Molecular Sciences, 10.3390/ijms222312677, 22:23, (12677) Berg P, Hansson Å, Røsand Ø, Marwarha G and Høydal M (2021) Overexpression of Neuron-Derived Orphan Receptor 1 (NOR-1) Rescues Cardiomyocytes from Cell Death and Improves Viability after Doxorubicin Induced Stress, Biomedicines, 10.3390/biomedicines9091233, 9:9, (1233) Guo G, Watterson S, Zhang S, Bjourson A, McGilligan V, Peace A and Rai T (2021) The role of senescence in the pathogenesis of atrial fibrillation: A target process for health improvement and drug development, Ageing Research Reviews, 10.1016/j.arr.2021.101363, 69, (101363), Online publication date: 1-Aug-2021. Wingard M, Dalal S, Shook P, Myers R, Connelly B, Thewke D, Singh M and Singh K (2021) Deficiency of ataxia-telangiectasia mutated kinase modulates functional and biochemical parameters of the heart in response to Western-type diet, American Journal of Physiology-Heart and Circulatory Physiology, 10.1152/ajpheart.00990.2020, 320:6, (H2324-H2338), Online publication date: 1-Jun-2021. Wang J, Bai J, Duan P, Wang H, Li Y and Zhu Q (2021) Kir6.1 improves cardiac dysfunction in diabetic cardiomyopathy via the AKT‐FoxO1 signalling pathway, Journal of Cellular and Molecular Medicine, 10.1111/jcmm.16346, 25:8, (3935-3949), Online publication date: 1-Apr-2021. Jozefczuk E, Szczepaniak P, Guzik T and Siedlinski M (2021) Silencing of Sphingosine kinase 1 Affects Maturation Pathways in Mouse Neonatal Cardiomyocytes, International Journal of Molecular Sciences, 10.3390/ijms22073616, 22:7, (3616) Gu L, Xie C, Peng Q, Zhang J, Li J and Tang Z (2019) Arecoline suppresses epithelial cell viability through the Akt/mTOR signaling pathway via upregulation of PHLPP2, Toxicology, 10.1016/j.tox.2019.03.006, 419, (32-39), Online publication date: 1-May-2019. Ackermann M, King B, Lieberman N, Bobbili P, Rudloff M, Berndsen C, Wright N, Hecker P and Kontrogianni-Konstantopoulos A (2017) Novel obscurins mediate cardiomyocyte adhesion and size via the PI3K/AKT/mTOR signaling pathway, Journal of Molecular and Cellular Cardiology, 10.1016/j.yjmcc.2017.08.004, 111, (27-39), Online publication date: 1-Oct-2017. Ma Y, Yang L, Ma J, Lu L, Wang X, Ren J and Yang J (2017) Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 10.1016/j.bbadis.2016.12.021, 1863:8, (1904-1911), Online publication date: 1-Aug-2017. Nishiga M, Horie T, Kuwabara Y, Nagao K, Baba O, Nakao T, Nishino T, Hakuno D, Nakashima Y, Nishi H, Nakazeki F, Ide Y, Koyama S, Kimura M, Hanada R, Nakamura T, Inada T, Hasegawa K, Conway S, Kita T, Kimura T and Ono K (2016) MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol, Circulation Research, 120:5, (835-847), Online publication date: 3-Mar-2017. Gao J, Chen T, Zhao D, Zheng J, Liu Z and Lu T (2016) Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo, PLOS ONE, 10.1371/journal.pone.0168219, 11:12, (e0168219) Fang X, Stroud M, Ouyang K, Fang L, Zhang J, Dalton N, Gu Y, Wu T, Peterson K, Huang H, Chen J and Wang N (2016)(2016)(2016)(2016) Adipocyte-specific loss of PPARγ attenuates cardiac hypertrophy, JCI Insight, 10.1172/jci.insight.89908, 1:16, Online publication date: 6-Oct-2016., Online publication date: 6-Oct-2016., Online publication date: 6-Oct-2016., Online publication date: 6-Oct-2016. Mohamed B, Schnelle M, Khadjeh S, Lbik D, Herwig M, Linke W, Hasenfuss G and Toischer K (2015) Molecular and structural transition mechanisms in long‐term volume overload, European Journal of Heart Failure, 10.1002/ejhf.465, 18:4, (362-371), Online publication date: 1-Apr-2016. Kerr B, West X, Kim Y, Zhao Y, Tischenko M, Cull R, Phares T, Peng X, Bernier-Latmani J, Petrova T, Adams R, Hay N, Naga Prasad S and Byzova T (2016) Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium, Nature Communications, 10.1038/ncomms10960, 7:1 Sundararaj K, Pleasant D, Moschella P, Panneerselvam K, Balasubramanian S and Kuppuswamy D (2016) mTOR Complexes Repress Hypertrophic Agonist–Stimulated Expression of Connective Tissue Growth Factor in Adult Cardiac Muscle Cells, Journal of Cardiovascular Pharmacology, 10.1097/FJC.0000000000000322, 67:2, (110-120), Online publication date: 1-Feb-2016. Gong X, Wang P, Wu Q, Wang S, Yu L and Wang G (2016) Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnTR141W transgenic mouse of dilated cardiomyopathy, European Journal of Cell Biology, 10.1016/j.ejcb.2015.11.003, 95:1, (57-67), Online publication date: 1-Jan-2016. Stoppel W, Kaplan D and Black L (2016) Electrical and mechanical stimulation of cardiac cells and tissue constructs, Advanced Drug Delivery Reviews, 10.1016/j.addr.2015.07.009, 96, (135-155), Online publication date: 1-Jan-2016. ZÁLEŠÁK M, BLAŽÍČEK P, GABLOVSKÝ I, LEDVÉNYIOVÁ V, BARTEKOVÁ M, ZIEGELHÖFFER A and RAVINGEROVÁ T (2015) Impaired PI3K/Akt Signaling as a Potential Cause of Failure to Precondition Rat Hearts Under Conditions of Simulated Hyperglycemia, Physiological Research, 10.33549/physiolres.932883, (633-641), Online publication date: 30-Oct-2015. Xie C, Zhang Y, Tran T, Wang H, Li S, George E, Zhuang H, Zhang P, Kandel A, Lai Y, Tang D, Reeves W, Cheng H, Ding Y, Yang L and Fan G (2015) Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts, PLOS ONE, 10.1371/journal.pone.0136816, 10:8, (e0136816) Holzem K, Marmerstein J, Madden E and Efimov I (2015) Diet-induced obesity promotes altered remodeling and exacerbated cardiac hypertrophy following pressure overload, Physiological Reports, 10.14814/phy2.12489, 3:8, (e12489), Online publication date: 1-Aug-2015. de Almeida P, Melo M, Lima R, Gavioli M, Santiago N, Greco L, Jesus I, Nocchi E, Parreira A, Alves M, Mitraud L, Resende R, Campagnole-Santos M, dos Santos R and Guatimosim S (2015) Beneficial Effects of Angiotensin-(1–7) Against Deoxycorticosterone Acetate–Induced Diastolic Dysfunction Occur Independently of Changes in Blood Pressure, Hypertension, 66:2, (389-395), Online publication date: 1-Aug-2015. Lin C, Hsu Y, Hsu S, Chen Y, Lee H, Lin S, Huang S, Tsai C and Shih C (2015) CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia, J" @default.
- W2102396989 created "2016-06-24" @default.
- W2102396989 creator A5060967318 @default.
- W2102396989 date "2006-05-02" @default.
- W2102396989 modified "2023-10-16" @default.
- W2102396989 title "Akt Signaling and Growth of the Heart" @default.
- W2102396989 cites W1534104940 @default.
- W2102396989 cites W1965575731 @default.
- W2102396989 cites W1968199172 @default.
- W2102396989 cites W1971727526 @default.
- W2102396989 cites W1978029099 @default.
- W2102396989 cites W1979612739 @default.
- W2102396989 cites W1979913537 @default.
- W2102396989 cites W2008421466 @default.
- W2102396989 cites W2013044317 @default.
- W2102396989 cites W2017292900 @default.
- W2102396989 cites W2018476823 @default.
- W2102396989 cites W2040143421 @default.
- W2102396989 cites W2041550708 @default.
- W2102396989 cites W2053073281 @default.
- W2102396989 cites W2053807893 @default.
- W2102396989 cites W2059202808 @default.
- W2102396989 cites W2060072866 @default.
- W2102396989 cites W2060334940 @default.
- W2102396989 cites W2080137732 @default.
- W2102396989 cites W2094138142 @default.
- W2102396989 cites W2105014609 @default.
- W2102396989 cites W2121708608 @default.
- W2102396989 cites W2131426434 @default.
- W2102396989 cites W2132136466 @default.
- W2102396989 cites W2137563421 @default.
- W2102396989 cites W2139089901 @default.
- W2102396989 cites W2140439371 @default.
- W2102396989 cites W2147114673 @default.
- W2102396989 cites W2150765336 @default.
- W2102396989 cites W2153106405 @default.
- W2102396989 cites W2153430526 @default.
- W2102396989 cites W2161444026 @default.
- W2102396989 cites W2171203591 @default.
- W2102396989 cites W2171908036 @default.
- W2102396989 doi "https://doi.org/10.1161/circulationaha.106.615138" @default.
- W2102396989 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16651482" @default.
- W2102396989 hasPublicationYear "2006" @default.
- W2102396989 type Work @default.
- W2102396989 sameAs 2102396989 @default.
- W2102396989 citedByCount "97" @default.
- W2102396989 countsByYear W21023969892012 @default.
- W2102396989 countsByYear W21023969892013 @default.
- W2102396989 countsByYear W21023969892014 @default.
- W2102396989 countsByYear W21023969892015 @default.
- W2102396989 countsByYear W21023969892016 @default.
- W2102396989 countsByYear W21023969892017 @default.
- W2102396989 countsByYear W21023969892019 @default.
- W2102396989 countsByYear W21023969892021 @default.
- W2102396989 countsByYear W21023969892022 @default.
- W2102396989 countsByYear W21023969892023 @default.
- W2102396989 crossrefType "journal-article" @default.
- W2102396989 hasAuthorship W2102396989A5060967318 @default.
- W2102396989 hasBestOaLocation W21023969891 @default.
- W2102396989 hasConcept C126322002 @default.
- W2102396989 hasConcept C164705383 @default.
- W2102396989 hasConcept C62478195 @default.
- W2102396989 hasConcept C71924100 @default.
- W2102396989 hasConcept C75217442 @default.
- W2102396989 hasConcept C86803240 @default.
- W2102396989 hasConcept C95444343 @default.
- W2102396989 hasConceptScore W2102396989C126322002 @default.
- W2102396989 hasConceptScore W2102396989C164705383 @default.
- W2102396989 hasConceptScore W2102396989C62478195 @default.
- W2102396989 hasConceptScore W2102396989C71924100 @default.
- W2102396989 hasConceptScore W2102396989C75217442 @default.
- W2102396989 hasConceptScore W2102396989C86803240 @default.
- W2102396989 hasConceptScore W2102396989C95444343 @default.
- W2102396989 hasIssue "17" @default.
- W2102396989 hasLocation W21023969891 @default.
- W2102396989 hasLocation W21023969892 @default.
- W2102396989 hasOpenAccess W2102396989 @default.
- W2102396989 hasPrimaryLocation W21023969891 @default.
- W2102396989 hasRelatedWork W1531601525 @default.
- W2102396989 hasRelatedWork W1966504330 @default.
- W2102396989 hasRelatedWork W2758277628 @default.
- W2102396989 hasRelatedWork W2935909890 @default.
- W2102396989 hasRelatedWork W2948807893 @default.
- W2102396989 hasRelatedWork W3173606202 @default.
- W2102396989 hasRelatedWork W3183948672 @default.
- W2102396989 hasRelatedWork W4387497383 @default.
- W2102396989 hasRelatedWork W2778153218 @default.
- W2102396989 hasRelatedWork W3110381201 @default.
- W2102396989 hasVolume "113" @default.
- W2102396989 isParatext "false" @default.
- W2102396989 isRetracted "false" @default.
- W2102396989 magId "2102396989" @default.
- W2102396989 workType "article" @default.