Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102426669> ?p ?o ?g. }
- W2102426669 endingPage "2654" @default.
- W2102426669 startingPage "2631" @default.
- W2102426669 abstract "Prediction of projected tree leaf area using allometric relationships with sapwood cross-sectional area is common in tree- and stand-level production studies. Measuring sapwood is difficult and often requires destructive sampling. This study tested multiple leaf area prediction models across seven diverse conifer species in the Sierra Nevada of California. The best-fit whole tree leaf area prediction model for overall simplicity, accuracy, and utility for all seven species was a nonlinear model with basal area as the primary covariate. A new non-destructive procedure was introduced to extend the branch summation approach to leaf area data collection on trees that cannot be destructively sampled. There were no significant differences between fixed effects assigned to sampling procedures, indicating that data from the tested sampling procedures can be combined for whole tree leaf area modeling purposes. These results indicate that, for the species sampled, accurate leaf area estimates can be obtained through partially-destructive sampling and using common forest inventory data." @default.
- W2102426669 created "2016-06-24" @default.
- W2102426669 creator A5008331828 @default.
- W2102426669 creator A5027058680 @default.
- W2102426669 creator A5034183141 @default.
- W2102426669 creator A5081299956 @default.
- W2102426669 date "2015-07-31" @default.
- W2102426669 modified "2023-10-17" @default.
- W2102426669 title "Leaf Area Prediction Using Three Alternative Sampling Methods for Seven Sierra Nevada Conifer Species" @default.
- W2102426669 cites W1550857001 @default.
- W2102426669 cites W1967248741 @default.
- W2102426669 cites W1972288805 @default.
- W2102426669 cites W1981138263 @default.
- W2102426669 cites W1983031952 @default.
- W2102426669 cites W1985915448 @default.
- W2102426669 cites W1991420198 @default.
- W2102426669 cites W1991806407 @default.
- W2102426669 cites W1994959798 @default.
- W2102426669 cites W1996995980 @default.
- W2102426669 cites W1997472199 @default.
- W2102426669 cites W1997970110 @default.
- W2102426669 cites W2005606861 @default.
- W2102426669 cites W2010784770 @default.
- W2102426669 cites W2019551048 @default.
- W2102426669 cites W2026057668 @default.
- W2102426669 cites W2027182955 @default.
- W2102426669 cites W2030858173 @default.
- W2102426669 cites W2031418293 @default.
- W2102426669 cites W2036367621 @default.
- W2102426669 cites W2048823294 @default.
- W2102426669 cites W2071165715 @default.
- W2102426669 cites W2092778469 @default.
- W2102426669 cites W2098981483 @default.
- W2102426669 cites W2102206458 @default.
- W2102426669 cites W2103724411 @default.
- W2102426669 cites W2116635928 @default.
- W2102426669 cites W2118295263 @default.
- W2102426669 cites W2129328218 @default.
- W2102426669 cites W2130871326 @default.
- W2102426669 cites W2132291134 @default.
- W2102426669 cites W2134769768 @default.
- W2102426669 cites W2142635246 @default.
- W2102426669 cites W2151686414 @default.
- W2102426669 cites W2166964044 @default.
- W2102426669 cites W2319753485 @default.
- W2102426669 cites W2324714574 @default.
- W2102426669 cites W4242160774 @default.
- W2102426669 doi "https://doi.org/10.3390/f6082631" @default.
- W2102426669 hasPublicationYear "2015" @default.
- W2102426669 type Work @default.
- W2102426669 sameAs 2102426669 @default.
- W2102426669 citedByCount "17" @default.
- W2102426669 countsByYear W21024266692017 @default.
- W2102426669 countsByYear W21024266692018 @default.
- W2102426669 countsByYear W21024266692019 @default.
- W2102426669 countsByYear W21024266692020 @default.
- W2102426669 countsByYear W21024266692021 @default.
- W2102426669 countsByYear W21024266692022 @default.
- W2102426669 crossrefType "journal-article" @default.
- W2102426669 hasAuthorship W2102426669A5008331828 @default.
- W2102426669 hasAuthorship W2102426669A5027058680 @default.
- W2102426669 hasAuthorship W2102426669A5034183141 @default.
- W2102426669 hasAuthorship W2102426669A5081299956 @default.
- W2102426669 hasBestOaLocation W21024266691 @default.
- W2102426669 hasConcept C105795698 @default.
- W2102426669 hasConcept C106131492 @default.
- W2102426669 hasConcept C113174947 @default.
- W2102426669 hasConcept C134306372 @default.
- W2102426669 hasConcept C140779682 @default.
- W2102426669 hasConcept C144024400 @default.
- W2102426669 hasConcept C147103442 @default.
- W2102426669 hasConcept C149923435 @default.
- W2102426669 hasConcept C18903297 @default.
- W2102426669 hasConcept C205649164 @default.
- W2102426669 hasConcept C28631016 @default.
- W2102426669 hasConcept C2908647359 @default.
- W2102426669 hasConcept C31972630 @default.
- W2102426669 hasConcept C33923547 @default.
- W2102426669 hasConcept C39432304 @default.
- W2102426669 hasConcept C41008148 @default.
- W2102426669 hasConcept C75373757 @default.
- W2102426669 hasConcept C86803240 @default.
- W2102426669 hasConcept C91354502 @default.
- W2102426669 hasConcept C97137747 @default.
- W2102426669 hasConceptScore W2102426669C105795698 @default.
- W2102426669 hasConceptScore W2102426669C106131492 @default.
- W2102426669 hasConceptScore W2102426669C113174947 @default.
- W2102426669 hasConceptScore W2102426669C134306372 @default.
- W2102426669 hasConceptScore W2102426669C140779682 @default.
- W2102426669 hasConceptScore W2102426669C144024400 @default.
- W2102426669 hasConceptScore W2102426669C147103442 @default.
- W2102426669 hasConceptScore W2102426669C149923435 @default.
- W2102426669 hasConceptScore W2102426669C18903297 @default.
- W2102426669 hasConceptScore W2102426669C205649164 @default.
- W2102426669 hasConceptScore W2102426669C28631016 @default.
- W2102426669 hasConceptScore W2102426669C2908647359 @default.
- W2102426669 hasConceptScore W2102426669C31972630 @default.
- W2102426669 hasConceptScore W2102426669C33923547 @default.