Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102461551> ?p ?o ?g. }
- W2102461551 endingPage "357" @default.
- W2102461551 startingPage "351" @default.
- W2102461551 abstract "A critical component of in silico analysis of underdetermined metabolic systems is the identification of the appropriate objective function. A common assumption is that the objective of the cell is to maximize growth. This objective function has been shown to be consistent in a few limited experimental cases, but may not be universally appropriate. Here a method is presented to quantitatively determine the most probable objective function.The genome-scale metabolism of Escherichia coli growing on succinate was used as a case-study for analysis. Five different objective functions, including maximization of growth rate, were chosen based on biological plausibility. A combination of flux balance analysis and linear programming was used to simulate cellular metabolism, which was then compared to independent experimental data using a Bayesian objective function discrimination technique. After comparing rates of oxygen uptake and acetate production, minimization of the production rate of redox potential was determined to be the most probable objective function. Given the appropriate reaction network and experimental data, the discrimination technique can be applied to any bacterium to test a variety of different possible objective functions.Additional files, code and a program for carrying out model discrimination are available at http://www.engr.uconn.edu/~srivasta/modisc.html." @default.
- W2102461551 created "2016-06-24" @default.
- W2102461551 creator A5031675415 @default.
- W2102461551 creator A5039686040 @default.
- W2102461551 creator A5052430339 @default.
- W2102461551 date "2006-12-06" @default.
- W2102461551 modified "2023-09-23" @default.
- W2102461551 title "Bayesian-based selection of metabolic objective functions" @default.
- W2102461551 cites W1502529406 @default.
- W2102461551 cites W1530835588 @default.
- W2102461551 cites W1543292456 @default.
- W2102461551 cites W1549469339 @default.
- W2102461551 cites W1581582023 @default.
- W2102461551 cites W1875803398 @default.
- W2102461551 cites W1969529366 @default.
- W2102461551 cites W1969684940 @default.
- W2102461551 cites W1976535356 @default.
- W2102461551 cites W1978486653 @default.
- W2102461551 cites W1982346730 @default.
- W2102461551 cites W1983120620 @default.
- W2102461551 cites W1990969593 @default.
- W2102461551 cites W1994656497 @default.
- W2102461551 cites W1994800936 @default.
- W2102461551 cites W2000240638 @default.
- W2102461551 cites W2001040164 @default.
- W2102461551 cites W2008818443 @default.
- W2102461551 cites W2009990638 @default.
- W2102461551 cites W2017721591 @default.
- W2102461551 cites W2019631913 @default.
- W2102461551 cites W2025663053 @default.
- W2102461551 cites W2032402968 @default.
- W2102461551 cites W2043016160 @default.
- W2102461551 cites W2049167322 @default.
- W2102461551 cites W2056037296 @default.
- W2102461551 cites W2062245653 @default.
- W2102461551 cites W2063475537 @default.
- W2102461551 cites W2065163714 @default.
- W2102461551 cites W2068065441 @default.
- W2102461551 cites W2072996759 @default.
- W2102461551 cites W2086886600 @default.
- W2102461551 cites W2096245011 @default.
- W2102461551 cites W2099039198 @default.
- W2102461551 cites W2101155309 @default.
- W2102461551 cites W2123632233 @default.
- W2102461551 cites W2133658233 @default.
- W2102461551 cites W2148190806 @default.
- W2102461551 cites W2152146387 @default.
- W2102461551 cites W2167945159 @default.
- W2102461551 cites W4247557889 @default.
- W2102461551 cites W4255087327 @default.
- W2102461551 cites W4327493871 @default.
- W2102461551 cites W4366111279 @default.
- W2102461551 doi "https://doi.org/10.1093/bioinformatics/btl619" @default.
- W2102461551 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17150997" @default.
- W2102461551 hasPublicationYear "2006" @default.
- W2102461551 type Work @default.
- W2102461551 sameAs 2102461551 @default.
- W2102461551 citedByCount "85" @default.
- W2102461551 countsByYear W21024615512012 @default.
- W2102461551 countsByYear W21024615512013 @default.
- W2102461551 countsByYear W21024615512014 @default.
- W2102461551 countsByYear W21024615512015 @default.
- W2102461551 countsByYear W21024615512016 @default.
- W2102461551 countsByYear W21024615512017 @default.
- W2102461551 countsByYear W21024615512018 @default.
- W2102461551 countsByYear W21024615512019 @default.
- W2102461551 countsByYear W21024615512020 @default.
- W2102461551 countsByYear W21024615512021 @default.
- W2102461551 countsByYear W21024615512022 @default.
- W2102461551 crossrefType "journal-article" @default.
- W2102461551 hasAuthorship W2102461551A5031675415 @default.
- W2102461551 hasAuthorship W2102461551A5039686040 @default.
- W2102461551 hasAuthorship W2102461551A5052430339 @default.
- W2102461551 hasBestOaLocation W21024615511 @default.
- W2102461551 hasConcept C104317684 @default.
- W2102461551 hasConcept C107673813 @default.
- W2102461551 hasConcept C11413529 @default.
- W2102461551 hasConcept C119857082 @default.
- W2102461551 hasConcept C14036430 @default.
- W2102461551 hasConcept C154945302 @default.
- W2102461551 hasConcept C167091322 @default.
- W2102461551 hasConcept C179690561 @default.
- W2102461551 hasConcept C186060115 @default.
- W2102461551 hasConcept C2775905019 @default.
- W2102461551 hasConcept C41008148 @default.
- W2102461551 hasConcept C55493867 @default.
- W2102461551 hasConcept C70721500 @default.
- W2102461551 hasConcept C78458016 @default.
- W2102461551 hasConcept C81917197 @default.
- W2102461551 hasConcept C86803240 @default.
- W2102461551 hasConceptScore W2102461551C104317684 @default.
- W2102461551 hasConceptScore W2102461551C107673813 @default.
- W2102461551 hasConceptScore W2102461551C11413529 @default.
- W2102461551 hasConceptScore W2102461551C119857082 @default.
- W2102461551 hasConceptScore W2102461551C14036430 @default.
- W2102461551 hasConceptScore W2102461551C154945302 @default.
- W2102461551 hasConceptScore W2102461551C167091322 @default.
- W2102461551 hasConceptScore W2102461551C179690561 @default.